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Preface

This is the code companion for the book Template Matching Techniques in Computer Vision:
Theory and Practice (hereafter TM for short), published by Wiley. The book illustrates the
R-code in two R packages, AnImAl and TeMa (available at the companion website), providing
respectively an interactive image processing environment and a set of algorithms useful in ex-
ploring the world of template matching techniques. The structure of the companion matches
that of TM: each chapter presents the abstract of the corresponding book chapter and contains
code snippets, providing additional examples or insights, as well as an extended bibliography
with links to the electronic edition whenever possible.

Due to website constraints, the actual sources of the code companion, including R packages,
datasets, and the scripts for the generation of a PDF version of the code companion can be
found at http://tev.fbk.eu/TM. The site contains:

AnImAl an image processing package for R (http://tev.fbk.eu/TM/AnImAl.tgz);

TeMa a template matching package for R (http://tev.fbk.eu/TM/TeMa.tgz);

theFaceDbs a set of multiracial face images with feature location (http://tev.fbk.eu/TM/
theFaceDbs.tgz);

theCodeCompanion source and scripts for the generation of the manual you are reading
(http://tev.fbk.eu/TM/theCodeCompanion.tgz);

theRenderingWorkshop a modification of PovRay providing partial RenderMan support and
some sample scripts (http://tev.fbk.eu/TM/theRenderingWorkshop.tgz).

The software is meant to be used in the GNU/Linux operating system: there is currently no
support for other operating systems. The most up to date version of this manual will be the
one at http://tev.fbk.eu/TM/html/tmCodeCompanion.html (and http://tev.fbk.eu/TM/
tmCodeCompanion.pdf).

contains material from Template Matching Techniques in Computer Vision: Theory and Practice, Roberto
Brunelli, © 2009 John Wiley & Sons, Ltd
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Chapter1
Introduction

Computer vision is a wide research field that aims at creating machines that see, not in the
limited acception that they are able to sense the world by optical means, but in the more

general acception that they are able to understand its perceivable structure. Template matching
techniques, as now available, have proven to be a very useful tool for this intelligent perception
process and have led machines to super human performance in recognition tasks such as face
recognition. This introductory chapter sets the stage for the rest of the book, where template
matching techniques for monochromatic images are discussed and applied to face analysis tasks.

keywords: computer vision, template matching, face recognition.

contains material from Template Matching Techniques in Computer Vision: Theory and Practice, Roberto
Brunelli, © 2009 John Wiley & Sons, Ltd



1.1 The software environment

The code used in this handbook is meant to be used in the open source, interactive statistical
processing environment commonly known as R, and it is based on two image processing pack-
ages: AnImAl, an image algebra, and TeMa, providing extended template matching support.
Both packages require additional ones, all of them freely available from the central repository of
CRAN, the Comprehensive R Archive Network (http://cran.r-project.org). Detailed infor-
mation on the functions provided by each package is available within the distributed packages.
The following code snippet presents the commands to load the required packages and a couple
of supporting functions to generate postscript output to be included in a research report.

1require(AnImAl)

2require(TeMa)

3source ("R/tm.eps.R")

4source ("R/tm.pasteImage.R")

This handbook makes use of Sweave functionalities available within the R environment: the
textual (latex) source files include special sections of R-code that are automatically executed
before creating the final text for the document. Most of the images presented in the book are
automatically generated in this way: correctness of reported code and alignment of results is
therefore ensured. The special Codelet sections are automatically formatted from annotated
code available in the provided packages or in the set of code snippets used to generate the
examples of this book.

1.2 Basic template matching

Template matching is the generic name for a set of techniques that quantify the similarity of
two digital images, or portion thereof, in order to establish whether they are the same or not.
Digital images are commonly represented with numerical arrays: monochrome images require
a single matrix while color images require multiple matrices, one per color component. We will
restrict our attention to monochrome images. Digital images can be stored in various formats
such as jpeg, tiff, or ppm. A variant of the latter, specific to grey level images, is commonly
identified with a .pgm suffix. Package AnImAl provides convenient functions to read them:

1sampleimages <- file.path(system.file(package = "AnImAl"), "sampleimages /")

2face1 <- as.animage(getChannels(read.pnm(

3... file.path(sampleimages , "sampleFace_01.pgm "))))

4face1

1[1] ai size: 270 x 180 focus: (0, 0), outside: 0, storage: real , document: FALSE

Note the darker region: it identifies R output. The coordinate system most often associated
to an image is left-handed: the value of the x coordinate increases from left to right while
that of the y coordinate increases from top to bottom (see Figure 1.1). This is due to images
being stored as arrays and to the fact that the y coordinate is associated to the row number. R
provides extensive graphical facilities and function tm.ploteps can be used to turn their output
to postscript files:

1# tm.plot.defaultFormat <- "X11"

2tm.plot.defaultFormat <- "jpg"

3tm.plot(file = "figures/sampleImage", ia.show(face1))

Setting tm.plot.defaultFormat <- "X11" (uncommenting line 1 above) makes subsequent
calls to tm.plot use the windowing system. We will routinely use tm.plot to produce the
images inserted in this manual. The existence of an image coordinate system allows us to specify
in a compact way rectangular regions: we simply need to provide the coordinates (x0, y0) of its
upper left corner and the horizontal and vertical dimensions (dx, dy):

8



Figure 1.1: A sample monochrome image with its left-handed coordinate system.

1x0 <- 26

2y0 <- 87

3dx <- 58

4dy <- 36

5eye1 <- ia.get(face1 , animask(x0,y0,dx, dy))

6tm.plot(" figures/sampleEye", ia.show(eye1))

The result, reported in Figure 1.2, is a new, smaller image that carries on the knowledge of
its original placement as the axes values show. As clarified in Figure TM1.2, the search for a
template, such as the one presented in Figure 1.2, within an image, such as the one in Figure 1.1,
is performed by scanning the whole image, extracting at each image position a region of interest
whose size corresponds to that of the template:

1for(y in ia.ymin(face1 ):(ia.ymax(face1)-dy)) {

2... for(x in ia.xmin(face1 ):(ia.xmax(face1)-dx)) {

3... w <- ia.get(face1 , animask(x, y, dx, dy))

4... ia.show(w)

5... }

6... }

Function ia.show in line 4 of the above code snippet would show image portion w in a window.
However, what we need to do is to compare each image w to the reference template eye1 assessing
their similarity. We should also store the resulting values in a map so that we can access them
freely after the computation is completed.

Codelet 1 Basic template matching (./R/tm.basicTemplateMatching.R)

This function illustrates the most basic template matching technique: the template is moved over each image position and
the sum of the squared difference of aligned image and template pixels is considered an indicator of template dissimilarity.

1tm.basicTemplateMatching <- function(image , template) {

The first step is to get the linear dimensions of the template

9



Figure 1.2: A detail of Figure 1.1: let us note that the coordinates in the original image are
preserved.

2dx <- ia.mask(template)@w

3dy <- ia.mask(template)@h

We then determine the extent of the image region of interest over which we need to slide our template

4x0 <- ia.xmin(image)

5y0 <- ia.ymin(image)

6x1 <- ia.xmax(image) - dx

7y1 <- ia.ymax(image) - dy

This allows us to prepare the storage for the similarity scores

8scores <- animage(array(0,dim=c(y1-y0+1,x1-x0+1)), storage ="real",focus=image@focus)

and to perform the actual computation loop,

9for(y in y0:y1) {

10for(x in x0:x1) {

sliding along each row and extracting in turn an image portion matching the size of the template

11w <- ia.get(image , animask(x, y, dx, dy))

We modify the template so that it overlaps the extracted region

12template@focus <- w@focus

and compute (and store) the matching score

13scores[y,x] <- sum(ia.matop(function(x,y) (x-y)**2, w, template)@data)

14}

15}

We can finally return the image representing the similarity map

16scores

17}
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It is now easy to spot our template in the image:
1source ("./R/tm.basicTemplateMatching.R")

2distScores <- tm.basicTemplateMatching(ia.subsample(face1 ,2),

3... ia.subsample(eye1 ,2))

4distScores <- distScores@data / ia.size(eye1)

5# the position of the template is that of minimum distance

6which(distScores == min(distScores), arr.ind = TRUE)

1row col

2[1,] 45 14

1simScoresA <- 1/(0.001+ distScores)

2# the position of the template is that of maximal similarity

3which(simScoresA == max(simScoresA), arr.ind = TRUE)

1row col

2[1,] 45 14

Note that the position of the template differs from that of the original eye1 as we down-sampled
the image: the coordinates are halved. We can also have a look at the resulting matrices to
get an idea of how extremal the matching value at the correct position is: this is related to the
concept of signal to noise ratio that we will consider in depth in later chapters.

1tm.plot(file = "figures/distanceMatch",

2... persp(distScores , xlab="y", ylab="x",

3... theta =45, phi = 25, shade = 0.35, expand = 0.75, r = 1,

4... lwd=0.1, ticktype =" detailed",zlab=" similarity "))

5tm.plot(file = "figures/similarityMatch",

6... persp(simScoresA , xlab="y", ylab="x",

7... theta =45, phi = 25, shade = 0.35, expand = 0.75, r = 1,

8... lwd=0.1, ticktype =" detailed",zlab=" similarity "))

Figure 1.3: The distance map (left) and the similarity map (right) corresponding to the matching
of template eye1 to face1.

AnImAl provides ia.correlation, a faster and more flexible function to perform the task
that will be considered in Chapter 3. Changing the value 0.001 used in the computation of
simScores significantly affects the distribution of values:
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1simScoresB <- 1/(0.01+ distScores)

2simScoresC <- 1/(0.1+ distScores)

3tm.plot(file = "figures/scoresHistA",

4... hist(simScoresA , xlab = "similarity", main ="0.001"))

5tm.plot(file = "figures/scoresHistB",

6... hist(simScoresB , xlab = "similarity", main ="0.01"))

7tm.plot(file = "figures/scoresHistC",

8... hist(simScoresC , xlab = "similarity", main ="0.1"))

The resulting distributions are reported in Figure 1.4.

Figure 1.4: The distributions of similarity scores obtained varying the denominator constant,
0.001, 0.01, 0.1 respectively from left to right. The highest similarity value determines the x
range: the lower the value used in the normalization, the higher the dynamic range exhibited
by the scores and the more far apart the value corresponding to the correct position from the
remaining ones.
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Chapter2
The Imaging Process

The chapter discusses some aspects of the imaging process that turn out to be critical in
the design of artificial vision systems. The basics of how images are created using elec-

tromagnetic stimuli and imaging devices are be considered. Simple concepts from optics will
are introduced, including distortion, depth of field, aperture, telecentric lens design. The basic
structure of eyes and digital imaging sensors is introduced and some artifacts of digital imaging
systems discussed. The sampling theorem is presented and its impact on image representation
and common image processing operations such as resizing is investigated.

keywords: light, optics, noise, diffraction, distortion, telecentric lens design, eye, digital
imaging sensor, sampling theorem, log-polar mapping.

contains material from Template Matching Techniques in Computer Vision: Theory and Practice, Roberto
Brunelli, © 2009 John Wiley & Sons, Ltd



2.1 Image distortions

Real optical systems are usually affected by geometrical distortions whose type and amount
varies significantly from barely visible to significant. Furthermore, some characteristics of light
propagation in an optical system results in unavoidable effects, such as wide angle lens vi-
gnetting. In this section we will look at a few TeMa functions that can be used to simulate
geometrical distortions and vignetting effects.

The first step is to get some perfect images. A simple and cheap way to obtain such images
is to generate them using a ray tracing system. Package TeMa includes some testing images
generated using the Persistence of Vision Ray Tracer (http://www.povray.org).

1tiffdir <- file.path(system.file(package ="TeMa"),

2... "sampleimages/cameraSimulation ")

3# normalize pixel value range to [0 ,255]

4i_ortho <- ia.scale(

5... ia.readAnimage(

6... file.path(tiffdir ," ortho_iso12233_large.tif")),

7... maxValue = 255)

8# get the red color channel

9i_orthoRed <- i_ortho [[1]]

10# and extract an image portion

11i_orthoRedDetail <- ia.get(i_orthoRed , animask (0 ,0 ,1201 ,256))

As detailed by Equations TM:2.26-27 geometrical distortions can be considered as image plane
effects and can be accurately simulated once the distortion curves are specified. Detailed distor-
tion information is often available for high quality lenses directly from the manufacturer or can
be measured using calibration patterns. The following code snippet shows to curves based on
the public data for a real wide angle lens: the percent distortion and the vignetting are reported
as a function of the distance expressed in millimeters from the optical center of the lens designed
for a standard 24×36mm frame. The distortion and vignetting curves are obtained using spline
interpolation given a set of manually measured points.

1sampleDistortion <-splinefun(c(0, 5.00 ,10.00 ,11.90 ,15.00 ,18.30 ,20.00 ,21.60) ,

2... c(0 , -0.41 , -1.55 , -2.00 , -2.45 , -2.00 , -1.18 , -0.11))

3sampleVignette <-splinefun(c(0, 5.00 ,10.00 ,15.00 ,20.00 ,21.60) ,

4... c(1, 0.86, 0.64 ,0.41 ,0.23 ,0.18))

Inspection of the distortion curve, reported in Figure 2.1, shows it to be of a complex type,
exhibiting both barrel distortion (up to 15mm from the optical center) and pincushion distortion
(from 15mm onwards).

1tm.plot(" figures/sampleDistortion",

2... plot (1:21, sampleDistortion (1:21) ,

3... type="b", xlab="mm", ylab=" Distortion"),

4... grid ())

Generating a vignetted image is a simple task using the functions provided by TeMa:
1vMap <- tm.computeVignettingMap(width =1201, height = 801,

2... curve = sampleVignette)

3vImage <- tm.vignetteImage(i_orthoRed , vMap)

4tm.plot(" figures/vImage", ia.show(vImage ))

5tm.plot(" figures/vDeltaProfile",

6... plot(vImage@data [475,]- i_orthoRed@data [475,],

7... type="l",ylab="Delta",xlab="X"))

The results are reported in Figure 2.2. A distorted image can be generated in a similar way
1dMaps <- tm.computeDistortionMaps(width =1201, height = 801,

2... curve = sampleDistortion)

3dImage <- tm.distortImage(i_orthoRed , dMaps)

A vignetted distorted image can be generated easily
1vdImage <- tm.vignetteImage(dImage , vMap)
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Figure 2.1: A sample distortion curved based on the data for a high quality real lens. The curve
tells us that this lens exhibit both barrel and pincushion distortion.

2.2 Diffraction Effects

When light passes through a small aperture, i.e. an aperture whose size if comparable to the
wavelength of light, the wave nature of light causes interference effects that result in perceivable
image quality loss. Images become more blurred due to the increasing support of the resulting
point spread function of the optical system. An immediate consequence is that we cannot indef-
initely gain depth of focus by reducing the aperture of the optical system as Equation TM:2.22
would suggest.

The following code snippet simulates the effect of diffraction with data corresponding to a
high resolution digital compact camera, assuming a default wavelength of 550e−9m: diffraction
is modeled by convolution with an appropriate kernel

1A <- ia.get(i_orthoRed , animask (0 ,0 ,1201 ,256))

2#

3# dK represents the points spread function of the

4# optical system (and corresponds to the Aity function)

5#

6dK <- tm.diffractionKernel(focalLength= 8.9e-3,

7... fStop= 16,

8... pixelSize= (8.8/3264)/1000)

9tm.plot(" figures/diffractionKernelF16",

10... persp(dK, main = "Airy diffraction kernel at f16"))

11#

12# In order to better appreciate the shape of the kernel we

13# can oversample it: dK3 can then not be used to simulate

14# the effect (as it corresponds to 3x oversmoothing)

15#

16dK3 <- tm.diffractionKernel(focalLength= 8.9e-3,

17... fStop= 16,

18... pixelSize= (8.8/3264)/1000 ,

19... superSampling =3)
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Figure 2.2: Vignetting appears as a (proportional) intensity reduction whose entity increase
from the center towards the boundary of the frame. The plot highlights the difference from the
perfect image along a row in the middle of the image. It is apparent that vignetting can have a
significant impact on template matching techniques.

20tm.plot(" figures/diffractionKernelF163x",

21... persp(dK3 , main = "Airy diffraction kernel at f16 (3x supersampled )"))

22#

23# We generate the diffracted image

24#

25B <- ia.convolution(A, dK)

26tm.plot(" figures/diffractionEffect",

27... ia.show(B, main=" Diffraction at f16"))

28#

29# and have a detailed look at an intermediate row

30#

31tm.plot(" figures/diffractionDetail",

32... matplot(cbind(A@data [126,], B@data [126,]),

33... type="l",col=c("black"), pch = 2:3, lty=1:2, xlab="x",

34... ylab="", main="W(/o) Diffraction "),

35... legend (0,150, c("No diffraction", "Diffraction "),

36... lty=1:2, col=c("black")),

37... height =3)
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2.3 Noise

Images are often corrupted by noise, random fluctuations that can be characterized by their
probability distribution. Two distributions are commonly used to model noise processes: the
Gaussian (normal) distribution and the uniform distribution. While several noise processes
affecting digital images can be described well by these distributions, quantum nature of light
results in a different kind of noise, photon noise, following a Poisson distribution (see Sec-
tion TM:2.1.4).

Codelet 2 Digital camera photon noise (../TeMa/R/tm.photonNoise.R)

Quantum nature of light manifests itself as a Poisson noise affecting digital imaging. In order to simulate this noise process
correctly we need to now a few parameters: the maximum number of electrons that fit within a pixel well and the corresponding
ISO sensitivity, the ISO sensitivity at which the picture is taken, the maximum intensity value, and the gamma correction
factor if any. These data allow us to map an intensity value in the digital image into and absolute number of electrons which
is proportional to the number of photons. The latter provides the (single) parameter λ controlling the Poisson process. The
default fullWell value is typical of a high-end digital reflex camera

1tm.photonNoise <- function(x,

2maxValue = 255,

3gammaCorrection = (1.0 / 2.2),

4fullWell = 51400,

5fullWellIso = 100,

6iso = 200)

7{

The first step is mapping the intensity value into a number proportional to the number of photons:

8lambdaOrig <- ((x/maxValue )**(1.0/ gammaCorrection)

9* fullWell

10* (fullWellIso / iso))

A new, noisy value is generated according to the corresponding Poisson distribution:

11lambdaPerturbed <- rpois(1, lambdaOrig)

and it is mapped back the digital image context

12return(maxValue

13* (( lambdaPerturbed *(iso/fullWellIso ))/ fullWell )** gammaCorrection)

14}

Photon noise is (proportionally) more significant in the darker areas of images: we choose
a new sample image with a dark background and we apply to it a plausible amount of photon
noise for a high ISO value of 3200 (the scale parameter of function tm.addNoise).

1sampleimages <- file.path(system.file(package = "AnImAl"), "sampleimages /")

2face2 <- as.animage(getChannels(read.pnm(

3... file.path(sampleimages , "sampleFace_03.pgm "))))

4# add a bit of light so that black is not completely black

5sFace <- ia.add(face2 , 0.1)

6nFace <- tm.addNoise(sFace , noiseType =" photon", scale =3200)

We can visually appreciate the effect of noise with a simple compositing operation:

1x <- ia.add(ia.get(sFace , animask(0,0, 90,270)),

2... ia.get(nFace , animask (90,0, 90 ,270)))

3tm.plot(" figures/photonNoiseComposite", ia.show(x))

and having a detailed look at a sample row of the image

1tm.plot(" figures/photonNoiseProfile",

2... plot(x@data [100,], type="l", xlab="x", ylab=" intensity "))

19



2.4 Digital imaging artifacts

Digital images are affected by characteristic artifacts that may impact significantly on template
matching. We will consider two of them: demosaicing and interlacing.

2.4.1 Demosaicing

High quality color imaging requires the sampling of three spectral bands at the same position
and at the same time. While solutions exist the most common setup is based on a trick: a lattice
of pixels, whose over number corresponds to the sensor resolution, is split into three different
groups. The pixels of each group are covered with a small color filter. The result is that spectral
information is not spatially aligned: each pixel only has information on one color. Full color
information must then be recovered using interpolation techniques and the result is different
from what would be obtained with full resolution color imaging especially in the proximity of
color discontinuities.

1img <- ia.scale(ia.readAnimage(file.path(tiffdir ," ortho_gretag_large.tif")),

2... maxValue = 255)

3img <- list(ia.get(img[[1]], animask (0 ,0 ,1201 ,256)) ,

4... ia.get(img[[2]], animask (0 ,0 ,1201 ,256)) ,

5... ia.get(img[[3]], animask (0 ,0 ,1201 ,256)))

6imgB <- tm.bayerizeImage(img)

7imgD <- tm.debayerizeImage(imgB)

8imgE <- ia.add(ia.abs(ia.sub(img[[1]], imgD [[1]])) ,

9... ia.add(ia.abs(ia.sub(img[[2]], imgD [[2]])) ,

10... ia.abs(ia.sub(img[[3]], imgD [[3]]))))

11tm.plot(" figures/mosaicImage",ia.show(imgB), height =3)

12tm.plot(" figures/deltaImage",ia.show(ia.matop(`-`, 1,imgE)), height =3)

13tm.plot(" figures/errorRow",

14... plot(imgE@data [128,],xlab="X",ylab="error",type="l"),height =3)

2.4.2 Interlacing

In some cases, image sensor data do not correspond to the same instant. Image rows are
subdivided into two disjoint sets, each of them representing a field: all the rows of a single field
share the same time but the two fields correspond to different instants. If the sensor is stationary
and the scene is static a single image can be reconstructed by collating the two fields. If the
camera is moving, or the scene is not static, the single image resulting from the integration of
two fields exhibits noticeable artifacts.

Codelet 3 Interlaced image generation (../TeMa/R/tm.interlaceImage.R)

Interlaced images are built by juxtaposition of two fields, each providing a partial image representation. This function
simulates the generation of a full resolution image from two different fields with user selectable field distance specified by
delta.

1tm.interlaceImage <- function(img , delta = 0L) {

We get the field composed by the odd lines

2oddField <- tm.imageField(img , odd = TRUE)

and the one by the even lines

3evenField <- tm.imageField(img , odd = FALSE)

We can simulate different time lapse factors by changing the value of delta and translating one of the fields accordingly:

4if(delta != 0) {

The full resolution image is simply obtained by summing the two fields:
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5img <- ia.get(ia.add(oddField ,

6ia.left(evenField , delta)),

7ia.mask(img))

8} else {

A value delta=0 corresponds to a static scene and stationary camera and is equivalent to the output of a progressive sensor:

9img

10}

11}

Interlacing impacts on template matching: line offset results in image differences that are not
compensated by the matching process. As the following code snippet shows, the effect increases
with the time delta of the two image fields and with the amount of local image structure (edges
are the major sources of difference).

1# We select the red image channel

2A <- img [[1]]

3# and we compute for different deltas

4ds <- c()

5for (delta in 0:20) {

6... # the integral (over a 11x11 window) of the pixels differences

7... # between the original and the (progressively more) interlaced one

8... ds <- c(ds, sum(ia.average(ia.abs(ia.sub(A,

9... tm.interlaceImage(A, delta))),

10... 11, 11) @data))

11... }

12ds <- ds / ia.size(A)

13tm.plot(" figures/interlaceDelta",

14... plot(ds, xlab="delta", ylab="error", type="l"))

15# Image regions with high gradient (such as edges or structurally reach

16# areas) contributes more

17tm.plot(" figures/interlaceDeltaImage",

18... ia.show(ia.average(ia.abs(ia.sub(A,

19... tm.interlaceImage(A, 10L))),

20... 11, 11)),

21... height =3)

2.5 Image resampling

Image processing algorithms, template matching techniques included, often require image scal-
ing and rotation. These operations are a subset of the linear transformations described by
Equation TM:2.74. As an illustrative example let us consider geometric normalization of a face
image: a combined rotation, scaling, and translation operation fixing the origin of the image
coordinate system at the midpoint of the segment joining the eyes, at the same time making
the eye to eye axis horizontal with eyes at a predefined distance from the new origin.

Image transformations of the type considered usually require image values at positions dif-
ferent from those of the original sampling. The computation of the new values can be performed
correctly if the requirements of the sampling theorem are satisfied, sometimes requiring a pre-
liminary smoothing step in order to reduce image frequency content, e.g. when reducing image
size. The actual resampling operation can then be performed relying on Lanczos interpolation.

The frequency conditioning step can be performed applying a Gaussian smoothing kernel or a
Lanczos kernel. Let us consider halving image resolution. As the Gaussian filter is approximately
band limited with critical spacing σ and corresponding bad-limit σ−1/2, it is appropriate to
smooth the image with a σ = 2 Gaussian kernel (as we want to halve its resolution. If we use a
Lanczos kernel we can rely on Equations TM:2.77-78 and sample the original kernel (twice) more
densely. A function is available for computing the kernel, tm.lanczosKernel: the sampling
density of the kernel is controlled by parameter factor.
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1lk12 <- tm.lanczosKernel(factor = 1, support = 2, trim = 5)

2lk22 <- tm.lanczosKernel(factor = 2, support = 2, trim = 5)

3tm.plot(" figures/lanczosKernels",

4... matplot (-5:5,cbind(t(lk12),t(lk22)),type="b",col=c("black"),

5... pch = 2:3, lty=1:2, xlab="x", ylab="",

6... main=" Lanczos kernels"),

7... legend (-5,0.9, c(" factor=1,support =2", "factor=2,support =2"),

8... pch=2:3, lty=1:2, col=c("black "))

9... )

If trim is omitted (or set to TRUE) the size of the kernel is appropriately computed to cover
its support. Kernel lk22 is the one to use in preconditioning image frequency content prior to
subsampling.

1sampleimages <- file.path(system.file(package = "AnImAl"), "sampleimages /")

2face1 <- as.animage(getChannels(read.pnm(

3... file.path(sampleimages , "sampleFace_01.pgm "))))

4A <- tm.normalizeFaceImage(face1 ,57 ,113 ,122 ,112 ,ee=22)

5B <- tm.normalizeFaceImage(face1 ,57 ,113 ,122 ,112 ,ee=22, smooth = FALSE)

6tm.plot(" figures/normalized1", ia.show(A, main = "Smoothed "))

7tm.plot(" figures/normalized2", ia.show(B, main = "Aliased "))

2.6 Log-polar imaging

While the representation of image as rectangular arrays is the most widespread, alternative
exists. Log-polar mapping, described in Section TM:2.4 is an example of space variant represen-
tation providing a spatial resolution decreasing from the center towards the boundary.

Log-polar mapping is usually obtained with specific sensors but can also be simulated via
software to appreciate some of its characteristics. When we change the image representation
from a (standard) rectangular lattice to a log-polar spatio-variant structure we are effectively
performing a resampling task which is prone to aliasing if frequency content is not properly
tuned. As log-polar sensor resolution is spatio-variant so must be the amount of smoothing ap-
plied before resampling. Usually, the two sensing structures are compared for a given maximum
spatial resolution. In the case of a rectangular sensor the maximum resolution extends over the
whole sensor while in the case of a log-polar sensor it is confined to the central (foveal) region.

1# We select an image portion

2#

3A <- ia.get(i_orthoRed , animask (472 ,272 ,257 ,257))

4tm.plot(" figures/lpOrig", ia.show(A, main=" Original "))

5#

6# and we smooth it, increasingly so towards the perifery ,

7# preparing it for a log -polar mapping with an angular

8# resolution of 72 cells

9#

10sA <- tm.logPolarSmoothing(A, angularResolution = 72)

11tm.plot(" figures/lpSmooth", ia.show(sA, main=" Smoothed "))

12#

13# and project/back project to get a feeling of the log -polar mapping with

14# 3960 pixels instead of 51471

15#

16lpeA <- tm.logPolarMapEquivalent(sA, R = 128, 72)

17#

18# We now create the ' real ' log -polar map where the horizontal

19# coordinate corresponds to rings , while the vertical one

20# represents the angular ' sector '
21#

22lpmA <- tm.logPolarMap(sA, 128, angularResolution = 72)

23#

24# and we plot it with a gamma correction of 2.2

25#

26tm.plot(" figures/lpMap",

27... plot(pixmapGrey ((lpmA )**(1.0/2.2)) ,
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28... main="Log polar map with k=72"))

29#

30# comparing it to the cartesian back projection

31# (with a gamma correction of 2.2)

32#

33tm.plot(" figures/lpEquiv",

34... plot(pixmapGrey (( lpeA@data )**(1.0/2.2)) ,

35... main=" Cartesian equivalent of a log -polar map with k=72"))
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Figure 2.3: Diffraction results in significant contrast loss at commonly encountered operating
conditions.
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Figure 2.4: Photon noise is due to the quantum nature of light: as its variance is proportional
to the square root of the average number of photons, its relative impact can be reduced by
increasing the average number of photons, e.g. using large pixels.
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Figure 2.5: Recovering full resolution color information using interpolation techniques is a cheap
(but suboptimal) solution that may result in noticeable artifacts.
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Figure 2.6: Interlacing results in image differences that increase with image field time lapse
(top) and with the amount of local image structure (bottom).
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Figure 2.7: A comparison of two Lanczos kernel with different sampling factors: the more
dispersed one is the one to use for image smoothing when halving its resolution.

Figure 2.8: An important example of image resampling: a face image is rotated, translated, and
scaled so that the (centers of) the eyes of the subject are located at predefined positions. The
two images illustrate the difference resulting from proper frequency conditioning via smoothing
(left) and the direct use of the affine transform of Equation TM:2.76
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Figure 2.9: Log-polar mapping, providing image representation with spatio-variant resolution,
requires a complex smoothing pre-processing. The images in the bottom row present the result-
ing map (left) and its back-projection in the standard image representation.
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Chapter3
Template Matching as Testing

The chapter formally introduces template matching as a hypothesis testing problem. The
Bayesian and frequentist approaches are considered with particular emphasis on the Neyman-

Pearson paradigm. Matched filters are introduced from a signal processing perspective and sim-
ple pattern variability is addressed with the normalized Pearson correlation coefficient. Hypoth-
esis test often requires the statistical estimation of the parameters characterizing the associated
decision function: some subtleties in the estimation of covariance matrices are discussed.

keywords: hypothesis testing, classification, Bayes risk criterion, Neyman-Pearson crite-
rion, matched filters, correlation coefficient, maximum likelihood estimation, James-Stein esti-
mator, shrinkage.

contains material from Template Matching Techniques in Computer Vision: Theory and Practice, Roberto
Brunelli, © 2009 John Wiley & Sons, Ltd



3.1 The ROC curve

A binary classification task can be considered as a binary hypothesis testin problem where one of
the two competing hypotheses H0 and H1 must hold. The two basic probabilities characterizing
the Neyman-Pearson approach to testing are the false alarm error probability PF and the
detection probability PD. The former is the probability of returning H1 when the true world
state is described by H0 and is also known as the probability of a type I error (or false acceptance
rate, FAR). The latter, also known as the test power, gives the probability with which H1 is
returned (by the classifier) when the true world state is H1. Neyman-Pearson classification,
which maximizes PD under a specified bound on PF , results in a simple thresholding operation
on the likelihood ratio value Λ(~x) for a pattern ~x under hypothesis H0:

Λ(~x)
H1

≷
H0

ν (3.1)

The relation between the two probabilities, specifically PD as a function of PF , is usually
represented with a receiver operating characteristic (ROC) curve that is extensively discussed
in Appendix TM:C:

PD = PD(PF ) (3.2)

The quantity 1 − PD represents the false negative error probability and is also known as the
false rejection rate (FRR). The ROC curve is often reported as

FAR = FAR(FRR) (3.3)

While the ROC curve provides detailed information on the trade-off between the two types of
errors, classification system are often synthetically characterized by means of the equal error
rate (EER), the intersection of the ROC curve with the diagonal

FAR = FRR (3.4)

When the data distribution under the two competing hypotheses is Gaussian with the same
covariance matrix (and different means) the probabilities considered above can be computed
in close form (see Section TM:3.3) and the multidimensional case does not present significant
differences from the one dimensional one. The key parameter, fixing the maximum achieavable
performance, is the separation of the distributions mean with respect to distribution standard
deviation. With reference to Equations TM:3.50-58, we can from parameter ν to

z =
ν

σ0
+
σ0

2
(3.5)

in order to compute PD = PD(PF ) exploint the fact that the Q-function is simply the comple-
ment to 1 of the distribution function (pnorm)

1z <- function(nu, s) (nu/s + s/2)

2# generate a sequence of threhsolds

3nus <- seq(-10,10,by=0.1)

4# transform them to z (with sigma = 3) ...

5zs <- z(nus , 3)

6tm.dev(" figures/normalRoc ")

7plot(1-pnorm(zs), 1 - pnorm(zs -3), type="l", lty=1,

8... xlab="False alarm rate", ylab=" Detection rate")

9zs <- z(nus , 2)

10lines(1-pnorm(zs), 1 - pnorm(zs -2), type="l", lty=2)

11zs <- z(nus , 1)

12lines(1-pnorm(zs), 1 - pnorm(zs -1), type="l", lty=3)

13grid()

14legend (0.6,0.6, c("sigma=3", "sigma=2", "sigma =1"), lty=c(1,2,3))

15dev.off()

36



Figure 3.1: When data are normally distributed the maximum achievable performance is deter-
mined by the separation of the classes relative to the standard deviation of the distribution σ0:
the higher σ0, the closer to the upper left corner the curve.

3.2 The normalized correlation coefficient

The basic template matching algorithm described in Chapter 1 is (very) sensitive to some
commonly encountered template variations. When taking a digital image of a scene with a
digital camera, even if we constrain ourselves to a fixed focal length, position and orientation,
we have some remaining degrees of freedom, such as exposure time and focusing distance. We
briefly consider the former: if we increase the exposure time (and the scene is relatively static)
the result will be a lighter image. More photons are captured by the sensor and the reported
intensity value will be proportionally higher. Additionally, sometimes, in order to make better
use of the dynamic range available for image representation, the actual intensity values are
streteched to fill a larger interval. The resulting transformation is of the following type

x→ x′ = αx+ β (3.6)

These transformations can be easily simulated:
1sampleimages <- file.path(system.file(package = "AnImAl"), "sampleimages /")

2face1 <- as.animage(getChannels(read.pnm(

3... file.path(sampleimages , "sampleFace_01.pgm "))))

4# generate a low contrast version of the face

5lcFace <- ia.add(ia.div(face1 ,4) ,0.25)

6lcEye <- ia.get(lcFace , animask (26 ,87 ,58 ,36))

We can modify the basic template matching of the previous chapter computing instead the
following similarity measure

rLp = 1− 1
dmax

(
1
N

∑
iii

|A(iii)−B(iii)|p
)1/p

(3.7)
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where A, and B are two congruent patterns and dmax is the maximum possible distance be-
tween them. This is exactly what ia.correlation does when invoked with type = "Lp" and
normalize = FALSE:

1cpa <- ia.correlation(lcFace , lcEye ,

2... type = "Lp", p=2L, range = 1, normalize = FALSE )[[1]] @data

3# get the position of the most similar image region

4which(cpa == max(cpa), arr.ind = TRUE)

The low contrast eye template is correctly locate in the low contrast face (let us note that
which acts on array whose indices start from 1 while image indices, in this case, start from
0). However, if we try to locate the eye in the normal contrast image we see that the returned
positio is not correct:

1cpb <- ia.correlation(face1 , lcEye , type = "Lp", p = 2L,

2... range = 1, normalize = FALSE )[[1]] @data

3which(cpb == max(cpb), arr.ind = TRUE)

The problem can be solved by normalizing each image window to zero average and unit standard
deviation before comparing it to the similarly normalized template:

1cpc <- ia.correlation(face1 , lcEye , type = "Lp", p = 2L,

2... range = 1, normalize = TRUE )[[1]] @data

3which(cpc == max(cpc), arr.ind = TRUE)

The normalization procedure let us spot the template correctly. The difference between the
similarity measure obtained with the normalized/unnormalized Lp similarity measure can be
appreciated by inspecting the contour plot of the corresponding maps:

1tm.dev(" figures/simContours", width=6, height =6)

2par(mfrow = c(2,2))

3persp(cpb , main = "Not normalized ")

4persp(cpc , main = "Normalized ")

5contour(cpb)

6contour(cpc)

7dev.off()

3.3 Stein estimation

As discussed at length in Chapter TM:3, an accurate estimate of probability distributions is key
to successfull hypotheses testing in general and template matching in particular. Even when
coping with the simple case of normally distributed patterns, the estimation of the correct
probability distribution parameter from experimentally avaialble data poses some challenges.
The key quantity to be estimated in this case is the covariance matrix, which, together with the
mean, completely characterize the distribution.

Codelet 4 On covariance estimation errors (R/tm.covarianceImpact.R)

We want to visualize the impact of errors in the estimation of the covariance matrix on PD, the detection probability,
at different operating conditions PF , as typical in the Neyman-Pearson paradigm. We refer to a single dimensional case,
assuming that the distance of class means is 1: the difficulty of the problem is changed by changing the (common) standard
deviation σ describing the two distributions. As easily checked from the results of Section TM3.3, we have that σ0 = σ−1.
We want to compute the impact on PD(σ0) given that we set the operating condition using PF (σ′), where σ′ is our estimate
of σ0 We first need to define a few functions, corresponding to Equation TM:3.15,

1tm.Q <- function(x, sd = 1.0) {

21 - pnorm(x/sd)

3}

to Equation TM:3.57,

4tm.Pf <- function(nu, sd0 = 1.0) {

5tm.Q(nu / sd0 + sd0/2)

6}
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and to Equation TM:3.58,

7tm.Pd <- function(nu, sd0 = 1.0) {

8tm.Q(nu / sd0 - sd0/2)

9}

By choosing σ = 1/3, from which σ0 = 3, we get a reasonable testing case:

10tm.covarianceImpact <- function(sigma0 = 3,

We then consider PF ∈ [0.01, 0.3]

11pfRange = c(0.01, 0.3, 0.01),

and a moderately large range for σ′ = ασ0 α ∈ [0.8, 1.2]:

12pcRange = c(0.8, 1.2, 0.025)) {

We generate the sampling sequences:

13ats <- seq(-3*sigma0 , 3*sigma0 , 0.1)

14pfs <- do.call(seq , as.list(pfRange ))

15pcs <- do.call(seq , as.list(pcRange )) * sigma0

and determine their lengths

16npfs <- length(pfs)

17npcs <- length(pcs)

from which we appropriately size the map:

18ci <- array(0, dim=c(npfs , npcs))

We now hypothesize several estimated values σ′,

19for(c in 1:npcs) {

and for each of them, we build the function nu ν = ν(x) : PF (ν) = x:

20nu <- splinefun(tm.Pf(ats , sd0=pcs[c]), ats)

21for(f in 1:npfs) {

We can now compute for a selected subset of operating conditions PF (σ′) based on our estimated standard deviation, the
difference in the miss probability with respect to the correct one PD(σ0):

22ci[f,c] <- (1-tm.Pd(nu(pfs[f]), pcs[c])) /(1-tm.Pd(nu(pfs[f]), sigma0 ))-1

23}

24}

25list(pfs , pcs , ci)

26}

1source ("R/tm.covarianceImpact.R")

2sigma0 <- 3

3ci <- tm.covarianceImpact(sigma0)

4tm.dev(" figures/covarianceImpact ")

5persp(ci[[1]], ci [[2]]/ sigma0 , ci[[3]], theta = 150, phi = 10,

6... shade = 0.9, expand = 0.75, r = 3, lwd=0.1,

7... ticktype =" detailed",cex=0.5, tcl=-0.5,

8... xlab="false alarm rate", ylab=" relative std. dev.",

9... main=" Relative change of miss probabilities", zlab ="")

10dev.off()

1# load support for shrinkage covariance estimation

2#

3require(corpcor)

4#

5source ("R/tm.shrinkageAdvantage.R")

6# the number of samples

7ns <- c(4 ,8 ,16 ,32 ,64 ,128 ,256 ,512)

8# the sample space dimension

9ps <- c(4 ,8 ,16 ,32 ,64 ,128 ,256 ,512)

10#

11shr <- tm.shrinkageAdvantage(ps, ns, ne = 10, ss = 10)

12#

39



13tm.dev(" figures/shrinkageAdvantage ")

14#

15persp(ns, ps, log(shr [[1]]/ shr [[2]]) ,

16... theta = 50, phi = -10, shade = 0.5,

17... ticktype =" detailed", xlab="n", ylab="p",

18... zlab="log(error Frobenius norm)", d=2)

19#

20dev.off()
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Figure 3.2: When data are normally distributed the maximum achievable performance is deter-
mined by the separation of the classes relative to the standard deviation of the distribution σ0:
the higher σ0, the closer to the upper left corner the curve.
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Figure 3.3: Small errors in the estimation of the parameters of the probability ditributions
can have a significant impact on classification performance. The plot shows how the error in
the estimation of the standard deviation of normally distributed data results in an amplified
detection error.
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Figure 3.4: Shrinkage covariance estimation, based on the James-Stein insight, significantly
outperforms the ordinary maximum likelihood estimator. The advantage increases with pattern
space dimensionality p, and inversely to the number of samples.
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Chapter4
Robust Similarity Estimators

A major issue in template matching is the stability of similarity scores with respect to noise,
including unmodeled phenomena. Many commonly used estimators suffer from a lack of

robustness: small perturbations in the data can drive them towards uninformative values. This
chapter addresses the concept of estimator robustness in a technical way presenting applications
of robust statistics to the problem of pattern matching. The approach is mainly based on the
concept of influence function. M-estimators are discussed and L1 based robust correlation
measures introduced. A solution to the problem of robust estimation of covariance matrices is
discussed.

keywords: robustness, influence function, M-estimators, breakdown point, robust correla-
tion coefficient.

contains material from Template Matching Techniques in Computer Vision: Theory and Practice, Roberto
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4.1 Validity of distributional hypotheses

The discussion of template matching as hypothese testing presented in Chapter TM:3 focused on
the case of a deterministic signal corrupted by normal noise. The two hypotheses correspond
to the case of a deterministic signal corrupted by normal noise and pure normal noise. What
happens when we compare slightly displaced versions of the signal? In this case we are not
comparing signal (possibly plus noise) with noise, but signal with signal, albeit displaced. What
kind of distribution can we expect?

We will experimentally investigate this using two different templates: an eye and a hex nut
(see Figure 4.1).

1sampleimages <- file.path(system.file(package ="TeMa"),

2... "sampleimages ")

3#

4img1 <- ia.scale(as.animage(getChannels(read.pnm(

5... file.path(sampleimages , "sampleFace_01.pgm")))),

6... 255)

7m1 <- animask (28 ,89 ,54 ,33)

8#

9img2 <- ia.scale(

10... ia.readAnimage(

11... file.path(sampleimages ,

12... "cameraSimulation",

13... "ortho_iso12233_large.tif")),

14... maxValue = 255)[[1]]

15m2 <- animask (485 ,288 ,231 ,225)

16#

17tm.plot(" figures/detail1", ia.show(ia.get(img1 ,m1)))

18tm.plot(" figures/detail2", ia.show(ia.get(img2 ,m2)))

Figure 4.1: The two different templates used to investigate the distribution of pixel differences
arising from misalignment and misalignment plus noise.

1# We first focus on the effect of pattern misalignment:

2# we consider the distributions of pixel values arising

3# from displacing the patterns by a (Manhattan) distance

4# z=1 and z=2

5#

6#

7dtl <- ia.get(img1 , m1)

8img <- img1

9m <- m1

10#
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11z <- 1

12values <- c()

13#

14for (i in z*seq(-1,1,by=1)) {

15... for (j in z*seq(-1,1,by=1)) {

16... dimg <- ia.sub(ia.get(ia.slide(img , z*i, z*j), m),

17... dtl)

18... values <- c(as.real(dimg@data), values)

19... }

20... }

21#

22tm.dev(" figures/dsts_1 ")

23hist(values ,breaks =100, freq=FALSE ,xlim=c(-50,50),

24... main=" Normal vs. Cauchy (z=1)")

25lines(seq(-50,50), dnorm(seq(-50,50), sd=sqrt(var(values ))), lty=1)

26lines(seq(-50,50), dcauchy(seq(-50,50), scale=mad(values ,constant =1)),lty=2)

27legend (20,0.15, c(" normal", "Cauchy"), lty =1:2)

28dev.off()

29#

30z <- 2

31values <- c()

32#

33for (i in z*seq(-1,1,by=1)) {

34... for (j in z*seq(-1,1,by=1)) {

35... dimg <- ia.sub(ia.get(ia.slide(img , z*i, z*j), m),

36... dtl)

37... values <- c(as.real(dimg@data), values)

38... }

39... }

40#

41tm.dev(" figures/dsts_2 ")

42hist(values ,breaks =100, freq=FALSE ,xlim=c(-50,50),

43... main=" Normal vs. Cauchy (z=2)")

44lines(seq(-50,50), dnorm(seq(-50,50), sd=sqrt(var(values ))), lty=1)

45lines(seq(-50,50), dcauchy(seq(-50,50), scale=mad(values ,constant =1)),lty=2)

46legend (20,0.04, c(" normal", "Cauchy"), lty =1:2)

47dev.off()

1# We now consider a slightly different case: we consider

2# a single displacement value z=1 (plus z=0) and change the

3# amount of normal noise: noise=0 and noise=2

4#

5#

6noise <- 0

7img <- img2

8m <- m2

9dtl <- tm.addNoise(ia.get(img ,m),"normal",scale=noise ,clipRange=c(0 ,255))

10#

11z <- 1

12values <- c()

13#

14for (i in z*seq(-1,1,by=1)) {

15... for (j in z*seq(-1,1,by=1)) {

16... dimg <- ia.sub(tm.addNoise(ia.get(ia.slide(img , z*i, z*j), m),

17... "normal",scale=noise ,clipRange=c(0,255)),

18... dtl)

19... values <- c(as.real(dimg@data), values)

20... }

21... }

22#

23tm.dev(" figures/dsts_3 ")

24hist(values ,breaks =100, freq=FALSE ,xlim=c(-50,50),

25... main=" Normal vs. Cauchy (noise =0)")

26lines(seq(-50,50), dnorm(seq(-50,50), sd=sqrt(var(values ))), lty=1)

27lines(seq(-50,50), dcauchy(seq(-50,50), scale=mad(values ,constant =1)),lty=2)

28legend (20,0.15, c(" normal", "Cauchy"), lty =1:2)

29dev.off()

30#

31noise <- 2

32values <- c()
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Figure 4.2: Considering slightly translated versions of the template as valid instances to be
detected corresponds to the introduction of a template variability whose effect is not dissimilar
to the addition of noise. As our lens in the template detection process is the computation of a
sum of pixel differences we may get a first appreciation of the resulting variability by looking at
the distribution of the differences of aligned pixels. While the detailed distribution depends on
the specific template and on the allowed misalignment spacing, many practical cases result in
a distribution that is better modeled with a Cauchy distribution than with a normal one. The
two plots present the distributions arising from two different misalignments: z=1 and z=2.

33#

34for (i in z*seq(-1,1,by=1)) {

35... for (j in z*seq(-1,1,by=1)) {

36... dimg <- ia.sub(tm.addNoise(ia.get(ia.slide(img , z*i, z*j), m),

37... "normal", scale=noise , clipRange=c(0,255)),

38... dtl)

39... values <- c(as.real(dimg@data), values)

40... }

41... }

42#

43tm.dev(" figures/dsts_4 ")

44hist(values ,breaks =100, freq=FALSE ,xlim=c(-50,50),

45... main=" Normal vs. Cauchy (noise =2)")

46lines(seq(-50,50), dnorm(seq(-50,50), sd=sqrt(var(values ))), lty=1)

47lines(seq(-50,50), dcauchy(seq(-50,50), scale=mad(values ,constant =1)),lty=2)

48legend (20,0.15, c(" normal", "Cauchy"), lty =1:2)

49dev.off()

4.2 Tanh estimators

Deviations of the actual distribution from the expect (model) one have a profound impact on
the resulting parameter estimates. The case we consider in the text, for small values of the
contamination location paramter, can be considered as a model for the estimation of image
normalization parameters in the context of face recognition. The distribution of face intensity
values, while not necessarily Gaussian, could be fruitfully morphed to a normal distribution (we
will consider this in the next chapter) and the perturbation considered is somehow similar to
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Figure 4.3: The two plots report the distribution of pixel differences in the case of misalignment
and no noise (left) and in the case of misalignment plus a small amount of normal noise (right).
The Cauchy distribution due to pattern misalignement dominates the normal noise distribution.
Of course, increasing the amount of noise would increase the Gaussianity of the final distribution.

the presence of specularities, such as those often appearing at eyes.
1values <- rnorm (100)

2ats <- seq(1, 20, by=1)

3na <- length(ats)

4cs <- seq(0, 0.2, by =0.01)

5nc <- length(cs)

6aveP <- array(0, dim=c(na,nc))

7sdP <- array(0, dim=c(na,nc))

8aveR <- array(0, dim=c(na,nc))

9sdR <- array(0, dim=c(na,nc))

10#

11cDist <- function(n=10000 , c = 0.01, at=100) {

12... nm <- as.integer(n*(1-c))

13... array(c(rnorm(nm), rep(at, n-nm)), dim=c(n,1))

14... }

15#

16ic <- 0

17for(c in cs) {

18... ic <- ic+1

19... ia <- 0

20... for(a in ats) {

21... ia <- ia+1

22... values <- cDist(c = c, at = a)

23... estP <- tm.robustEstimates(values , "p")

24... estR <- tm.robustEstimates(values , "O")

25... aveP[ia,ic] <- estP [1] ; sdP[ia,ic] <- estP [2]

26... aveR[ia,ic] <- estR [1] ; sdR[ia,ic] <- estR [2]

27... }

28... }

29#

30tm.plot(" figures/aveP",

31... persp(ats ,cs,aveP ,theta=45, phi=25,shade =0.35, expand =0.75,r = 1,

32... xlab=" contamination", ylab="cont. location",

33... main=" Standard sample location estimator",

34... zlim = c(min(min(aveR),min(aveP)),max(max(aveR),max(aveP))),

35... lwd=0.1, ticktype =" detailed",zlab=" location "))

36tm.plot(" figures/aveR",

51



37... persp(ats ,cs,aveR ,theta=45, phi=25,shade =0.35, expand =0.75,r = 1,

38... xlab=" contamination", ylab="cont. location",

39... main=" Location scale estimator",

40... zlim = c(min(min(aveR),min(aveP)),max(max(aveR),max(aveP))),

41... lwd=0.1, ticktype =" detailed",zlab=" location "))

42tm.plot(" figures/sdP",

43... persp(ats ,cs,sdP ,theta=45, phi=25,shade =0.35, expand =0.75,r = 1,

44... xlab=" contamination", ylab="cont. location",

45... main=" Standard sample scale estimator",

46... zlim = c(min(min(sdR),min(sdP)),max(max(sdR),max(sdP))),

47... lwd=0.1, ticktype =" detailed",zlab="scale "))

48tm.plot(" figures/sdR",

49... persp(ats ,cs,sdR ,theta=45, phi=25,shade =0.35, expand =0.75,r = 1,

50... xlab=" contamination", ylab="cont. location",

51... main="Tanh scale estimator",

52... zlim = c(min(min(sdR),min(sdP)),max(max(sdR),max(sdP))),

53... lwd=0.1, ticktype =" detailed",zlab="scale "))

54#

55tm.plot(" figures/avePH",hist(aveP))

56tm.plot(" figures/aveRH",hist(aveR))

57tm.plot(" figures/sdPH", hist(sdP))

58tm.plot(" figures/sdRH", hist(sdR))

Tanh estimators can be used to define a robust version of the standard Pearson correlation
coefficient as illustrated by function tm.robustifiedCorrelation.

Codelet 5 A simple approach to robustified correlation
(../TeMa/R/tm.robustifiedCorrelation.R)

Pearson correlation coefficient is closely related to the computation of the variance of a set of numbers: it is the dot product
of two vectors previously normalized to zero average and unitary variance. The sensitivity of the standard sample variance
estimator to the presences of outlying values, such as those due to salt and pepper noise, affects the robustness of the
Pearson correlation coefficient. Equation TM:4.17 shows how we can define a robust correlation coefficient using a robust
scale estimator. The function tm.robustifiedCorrelation implements Equation TM:4.17 using the scale estimates provided
by tm.robustEstimates.

1tm.robustifiedCorrelation <- function(X, Y, mode="O") {

X and Y represent two images, usually normalized to zero location and unitary scale using tm.normalizeImage. The third
parameter, mode, can assume three different values: "p", corresponding to the usual (non robust) sample estimator, "M",
corresponding to a (non-refined) tanh estimator, and "O", corresponding to a one-step version of the tanh estimator. In
order to exploit Equation TM:4.17, we must generate two new random variables that correspond respectively to the sum and
to the difference of the two images:

2XpY <- ia.add(X, Y)

3XmY <- ia.sub(X, Y)

proceeding to the computations required by Equation TM:4.17

4sp <- tm.robustEstimates(array(XpY@data , dim=c(ia.size(XpY),1)), mode)

5sm <- tm.robustEstimates(array(XmY@data , dim=c(ia.size(XmY),1)), mode)

6(sp[2]*sp[2] - sm[2]*sm[2])/ (sp[2]*sp[2] + sm[2]*sm[2])

7}

4.3 L1 similarity measures

While the robustness achievable with tm.robustifiedCorrelation is remarkable, there are
two related problems:

1. it requires a substantial amount of computation;

2. it can be, paradoxically, too robust: it looses discrimination efficiency.
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Figure 4.4: The plots make it clear that the standard sample estimators suffer significantly
from the presence of contamination. The effect is more marked for the estimation of the scale
parameter, a value that will turn out to be of paramount importance in many template matching
techniques which rely on an accurate estimation of the covariance matrix.

Both problems can be solved using the similarity estimators based on the L1 norm as described
in Section TM:4.3.

1tm.noiseSimilarityImpact <- function(img , cRange=c(0 ,0.2)) {

2... c0 <- cRange [1]

3... c1 <- cRange [2]

4... cs <- seq(c0,c1 ,(c1-c0)/10)

5... n <- length(cs)

6... #

7... img <- ia.scale(img)

8... res <- array(0, dim=c(n, 5))

9... #

10... i <- 0

11... X <- tm.normalizeImage(img)

12... for(c in seq(c0,c1 ,(c1-c0 )/10)) {

13... i <- i + 1

14... res[i,1] <- c

15... #

16... Y <- tm.addNoise(img , noiseType =" saltpepper", scale = 1, percent=c)
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Figure 4.5: This figures presents an alternative view of the data presented in Figure 4.4. We
discarde the dependency on contamination value and location and we plot the histogram of the
estimates in order to better appreciate the corresponding variability.

17... Y <- tm.normalizeImage(Y)

18... #

19... res[i,2] <- tm.robustifiedCorrelation(X, Y, "p")

20... res[i,3] <- tm.robustifiedCorrelation(X, Y, "O")

21... res[i,4] <- max(ia.correlation(X,Y, type="G")[[1]] @data )/100

22... res[i,5] <- max(ia.correlation(X,Y, type="L")[[1]] @data )/100

23... }

24... #

25... res

26... }

1f <- ia.get(img1 , animask (32 ,87 ,104 ,104))

2nsi <- tm.noiseSimilarityImpact(f)

3tm.dev(" figures/robustCorrelation ")

4matplot(nsi[,1], nsi[,2:5], type="b", pch=2:5, lty=2:5,

5... xlab="Salt&pepper contamination", ylab=" Similarity ")

6legend (0.1,0.9,c(" Pearson", "Tanh", "G", "L"), lty=2:5, pch =2:5)

7grid()

8dev.off()
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Figure 4.6: The presence of noise adversely affects the correct assessment of pattern similarity.
The plot compares the decay of the similarity computed by different estimators at varying
degrees of contamination. The superior robustness of the tanh robustified correlation estimator
has a downside: it is so robust that its discriminatory ability is reduced.
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Chapter5
Ordinal Matching Measures

Linear correspondence measures like correlation and the sum of squared differences between
intensity distributions are (technically) non robust. Similarity measures based on the rela-

tive ordering of intensity values in image regions have demonstrable robustness both to mono-
tonic image mappings and to the presence of outliers. In spite of the amount of information
discarded when only ordinal information is used, the associated similarity measures, such as
ordinal correlation of rank distances, preserve good pattern discriminability.

keywords: rank transform, census transform, Spearman correlation coefficient, Kendall
correlation coefficient, Bhat-Nayar distance, incremental sign transform.
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5.1 Histogram equalization

The use of the normalized correlation coefficient allows us to cope with global linear intensity
remapping of the images being compared.

1sampleimages <- file.path(system.file(package ="TeMa"),

2... "sampleimages ")

3img1 <- ia.scale(as.animage(getChannels(read.pnm(

4... file.path(sampleimages , "sampleFace_01.pgm")))),

5... 255)

6m <- animask (32 ,87 ,104 ,104)

7face <- ia.integerAnimage(ia.scale(ia.get(img1 , m), 255))

However, in many cases, image intensity undergoes a non linear transformation, a typical case
being that of gamma correction, routinely applied by cameras in order to provide images that
are more readable from human inspectors. The following code snippet applies a darkening
gamma correction:

1dark <- ia.matop(function(x) ((x/255)**(4))*255 , face)

2tm.plot(" figures/dark", ia.show(dark))

3tm.plot(" figures/darkH", hist(dark))

If we compute the correlation between dark and face we do not get 1 but a lower value
1ia.correlation(ia.realAnimage(dark), ia.realAnimage(face ))[[4]]

1[1] 0.957491

even if the value is not as low as one would expect by the perceived image difference. Let us
consider the following problem: given a set of face images, snapped under different illumination
conditions, we want to compare each of them to every other one. This means that for each
comparison, the two images may be characterized by two different illumination conditions.
A possible solution is to equalize in turn one of the images, the one whose histogram has a
lower entropy and hence less information, so that it approximates the histogram of the more
informative image. By doing so, we ensure that we do not throw away information. Let us
assume that we are working with 8 bits images (256 intensity levels).

1tm.entropy <- function(img) {

2... fs <- (hist(img ,plot=FALSE ,breaks =0:256) $counts )/ia.size(img)

3... fs <- fs[fs > 0]

4... -sum(fs*log2(fs))

5... }

6tm.entropy(dark)

1[1] 6.514707

1tm.entropy(face)

1[1] 6.642061

As face has a higher entropy, we equalize dark using as target histogra the histogram of face:
1darkEq <- tm.histogramEqualize(dark ,

2... list(type=" target",

3... histo=tm.histogram(face )))

4ia.correlation(ia.realAnimage(darkEq), ia.realAnimage(face ))[[4]]

1[1] 0.9999505

The histogram of darkEq is now very similar to that of face and the correlation value of the
two images is higher than that of the couple (dark, face). The major drawback of this strategy
is that every time we compare two (different) images we must perform a different equalization.
An alternative is to choose a neutral equalization target, and normalize each image towards it.
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A natural choice is to choose a Gaussian distribution whose location paramters is 128 and whose
standard deviation is such that no shadow or highlight clipping occurs when restricting to the
interval [0.255]:

1darkEq <- tm.histogramEqualize(dark ,

2... eqSpecs = list(type=" Gaussian",

3... gMin=0, gMax =256, mu=128, sd=30))

4faceEq <- tm.histogramEqualize(face ,

5... eqSpecs = list(type=" Gaussian",

6... gMin=0, gMax =256, mu=128, sd=30))

7tm.plot(" figures/darkEq", ia.show(darkEq ))

8tm.plot(" figures/darkEqH", hist(darkEq ))

Even in this case we get a better correlation value than the one we got when comparing directly
dark and face:

1ia.correlation(ia.realAnimage(darkEq), ia.realAnimage(faceEq ))[[4]]

1[1] 0.999878

Figure 5.1: Image dark (top row) can be equalized so that the distributions of its intensity
values approaches a Gaussian distribution (bottom row).
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5.2 Ordinal Correlation Measures

An easy way to gain robustness to arbitrary monotone image intensity transformation is to
switch from the comparison of absolute intensity values to the comparison of their relative
ranking by considerining ordinal correlation measures. Among them, the Spearman and the
Kendall coefficients have been routinely used in statistical analysis. We can use them to compare
the two images dark and face:

1cor(as.real(dark@data), as.real(face@data), method =" spearman ")

1[1] 0.9999929

1cor(as.real(dark@data), as.real(face@data), method =" kendall ")

1[1] 0.9996391

1cor(as.real(dark@data), as.real(face@data), method =" pearson ")

1[1] 0.957491

As expected, the Spearman and Kendall coefficients are insensitive to the applied image trans-
formation while the Pearson coefficient is adversely affected by it. The computation time of the
new coefficients is higher and it can be appreciated by timing their computation:

1system.time(cor(as.real(dark@data), as.real(face@data), method =" spearman "))

1user system elapsed

20.009 0.000 0.009

1system.time(cor(as.real(dark@data), as.real(face@data), method =" kendall "))

1user system elapsed

23.695 0.000 3.753

1system.time(cor(as.real(dark@data), as.real(face@data), method =" pearson "))

1user system elapsed

20.001 0.000 0.001

The estimates of correlation based on the Spearman and Kendall coefficient also exhibit a
reduced noise sensitivity, a fact that we can check with the following code snippet:

1eye <- ia.get(face , animask (38 ,89 ,44 ,33))

2ns <- seq (0 ,0.5 ,0.025)

3n <- length(ns)

4cvs <- array(0, dim = c(n, 4))

5S <- 5

6for(i in 1:n) {

7... cvs[i,1] <- ns[i]

8... for(s in 1:S) {

9... neye <- tm.addNoise(eye , "saltpepper", scale =255,

10... clipRange=c(0L, 255L), percent = ns[i])

11... cvs[i,2] <- cvs[i,2] + cor(as.real(eye@data), as.real(neye@data),

12... method =" spearman ")

13... cvs[i,3] <- cvs[i,3] + cor(as.real(eye@data), as.real(neye@data),

14... method =" kendall ")

15... cvs[i,4] <- cvs[i,4] + cor(as.real(eye@data), as.real(neye@data),

16... method =" pearson ")

17... }

18... }

19cvs[,2] <- cvs[,2]/S

20cvs[,3] <- cvs[,3]/S

21cvs[,4] <- cvs[,4]/S
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1tm.dev(" figures/ordinalRobustness ")

2matplot(cvs[,1], cvs[,2:4], pch=1:3, lty=1:3, type="b",

3... xlab="noise perc.", ylab=" correlation ")

4legend (0.2,1, c(" Spearman", "Kendall", "Pearson"), lty=1:3, pch =1:3)

5grid()

6dev.off()

Figure 5.2: The ordinal correlation estimates from the Spearman and Kendall coefficients are
less sensitive to noise than the estimate provided by the Pearson coeffcient. The robustness of
the Spearman and Kendall estimates, at least in the present case, is very similar suggesting the
usage of the Spearman coefficient whose computation is much faster.

5.3 Bhat-Nayar correlation

A simple and useful way to characterize the discriminatory power of a template matcher is to
compute its signal to noise ratio SNR: its response at the correct location divided by its average
response everywhere else. If the SNR is high, detection is expected to be reliable. We can detect
our template simply by thresholding the response of the detector: small amounts of noise are
not expected to make the value drop below threshold or making the value of other patterns arise
above threshold. If the SNR is low, detection by thresholding might be unreliable or downright
impossible. Function tm.snr provides a sample implementation of this quality parameter:

1tm.snr <- function(map , at) {

2... n <- ia.size(map)

3... map[at[2], at [1]]/(( sum(map@data) - map[at[2], at [1]])/(n-1))

4... }

We can apply the concept of SNR to the comparison of the original Bhat-Nayar correlation
measure (Equation TM:5.24) to the modified version Equation TM:5.27. The testbed we consider
is that of matching a no-noise version of the eye region of the original face face image to a
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noisy version of the dark face. We compute the modified Bhat-Nayar correlation weighting the
average part of the contribution with α:

r′BN(α) = 1−

[
(1− α)

maxNi=1 d
i
m

bN2 c
+ α

∑N
i=1 d

i
m

bN2

4 c

]
. (5.1)

When α = 0 we recover the original Bhat-Nayar definition, while α = 1 keeps only the average
distance. In order to compute the SNR we must identify the reference template position: the
image coordinates representing the upper left corner of the eye template, i.e. (38, 89). Besides
computing the signal to noise ratio, we want to check the actual correlation value returned at
the reference template location.

1nDark <- tm.addNoise(dark , "saltpepper", scale =255, clipRange=c(0L, 255L),

2... percent = 0.01)

3alphas <- seq(0,1,0.1)

4n <- length(alphas)

5snrs <- array(0, dim = c(n, 3))

6for(a in 1:n) {

7... snrs[a,1] <- alphas[a]

8... bnC <- tm.bhatNayarCorrelation(nDark , eye , alpha=alphas[a])

9... snrs[a,2] <- tm.snr(bnC[[1]], c(38 ,89))

10... snrs[a,3] <- bnC [[1]][89 ,38]

11... }

12tm.dev(" figures/bnSNR")

13plot(snrs[,1], snrs[,2], main=" Modified Bhat -Nayar correlation SNR",

14... type="b", xlab="alpha", ylab="SNR")

15grid()

16dev.off()

17tm.dev(" figures/bnC")

18plot(snrs[,1], snrs[,3], main=" Modified Bhat -Nayar correlation",

19... type="b", xlab="alpha", ylab=" correlation ")

20grid()

21dev.off()

As we can appreciate from the corresponding plots reported in Figure 5.3, the averaged version
of the Bhat-Nayar distance exhibits a better SNR and a better correlation value. The Bhat-

Figure 5.3: The signal to noise ratio and the maximum correlation value for the modified Bhat-
Nayar correlation measure discussed in the text.

Nayar similarity measure is an excellent example of the kind of robustness that we can achieve
using ordinal similarity measures: monotone intensity transformation have no impact on the
resulting estimates and noise effects are markedly reduced with respect to standard correlation:
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1ia.correlation(ia.realAnimage(nDark),ia.realAnimage(eye ))[[4]]

1[1] 0.8974402

5.4 Non Parametric Local Transforms

Another way to gain robustness to intensity transformations and small amounts of noise is by
means of local image operations transforming intensity values into pseudo intensity values based
on local rank information. The transformed values are then insensitive to positive monotone
image mappings and can accomodate a small amount of noise as long as noise does not change the
relative rank of the intensity values. We consider four different non parametric local transforms
based on ordinal information:

1. rank,

2. census,

3. modified census, including the central reference pixel,

4. incremental sign transform.

All the above transforms are provided by function tm.ordinalTransform with the use of a
proper mode selector value (see Figure 5.4. Let us note that, as the transform cannot be com-
puted at the boundary of the image, function tm.ordinalTransform performs an autoframing
operation by default: we can prevent it by using autoFrame=FALSE.

1N8 <- tm.squareNeighborhood (1L)

2rankT <- tm.ordinalTransform(face , N8, mode="rank")

3censusmT <- tm.ordinalTransform(face , N8, mode=" census ")

4censusT <- tm.ordinalTransform(face , N8, mode=" censusm ")

5istT <- tm.ordinalTransform(face , N8, mode="ist")

6tm.plot(" figures/rank", ia.show(rankT , main="Rank "))

7tm.plot(" figures/census", ia.show(censusT , main=" Census "))

8tm.plot(" figures/censusm",ia.show(censusmT ,main=" Census (modified )"))

9tm.plot(" figures/ist", ia.show(istT , main="Ist"))

The neighborhood used for the computation of the local transforms is important for several
reasons. The (computational) complexity of the transform depends on the number of points in
the neighborhood. In the case of the census transform, the storage requirements for the result
scale linearly with the number of points. As the result must be stored as an integer number
for efficient use in image comparison tasks, the maximum number of points does not exceed 32
(sometimes 64). The number of points directly affects the dynamic range of the rank transform:
the range corresponds to the number of points in the neighborhood, the larger, the more detailed
the information provided.

It is possible to keep the number of points in the neighborhood small while increasing their
spacing. This operation has a beneficial effect as the relative ordering of the pixel intensity values
becomes more stable with increasing spacing: for a given local gradient, the farther apart the
pixels, the greater the difference, and the more stable the relative ranking. The phenomenon
can be visually appreciated in Figure 5.5

1rankT1 <- tm.ordinalTransform(face , N8, mode="rank")

2rankT2 <- tm.ordinalTransform(face , N8*2L, mode="rank")

3rankT3 <- tm.ordinalTransform(face , N8*3L, mode="rank")

4tm.plot(" figures/spacing1", ia.show(rankT1 , main="Rank (1)"))

5tm.plot(" figures/spacing2", ia.show(rankT2 , main="Rank (2)"))

6tm.plot(" figures/spacing3", ia.show(rankT3 , main="Rank (3)"))

A similar effect can be observed for the census transform (see Figure 5.6).
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Figure 5.4: The different images present the four non parametric local transforms considered in
the text.

1#

2cs <- seq (0 ,0.4 ,0.02)

3n <- length(cs)

4res <- array(0, dim=c(n, 4))

5i <- 0

6X <- tm.ordinalTransform(dark , N8, mode=" census ")

7for(c in cs) {

8... i <- i + 1

9... res[i,1] <- c

10... #

11... Y <- tm.ordinalTransform(tm.addNoise(dark , noiseType =" saltpepper",

12... scale = 255, clipRange=c(0L,255L),

13... percent=c),

14... N8, mode = "census ")

15... #

16... res[i,2] <- tm.hamming(X, Y, width =8)

17... res[i,3] <- tm.tanimoto(X, Y)

18... res[i,4] <- tm.dixonKoehler(X, Y, width =8)

19... }

20#

21tm.dev(" figures/bitDistances ")

22matplot(res[,1], res[,2:4], type="b", pch=2:4, lty=2:4,
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Figure 5.5: Increasing the spacing among the pixels of the neighborhood may increase the stabil-
ity of the ordinal relations among the pixel intensity values with no impact on computation time
or result storage requirements. The above images show what happens for the rank transform.

Figure 5.6: The effect of neighborhood spacing on the result of the census transform.

23... xlab="Salt&pepper contamination", ylab="Bit distance ")

24legend (0.0,0.3,c(" Hamming", "Tanimoto", "Dixon -Koehler"), lty=2:4, pch =2:4)

25grid()

26dev.off()
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Figure 5.7: The correct way to compare the images resulting from the census transform is to use
bit based distances. The plot illustrates the results obtained applying the distances dicussed in
the text.
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Chapter6
Matching Variable Patterns

While finding a single, well defined shape is useful, finding instances of a class of shapes is
even more useful. Intraclass variability poses new problems for template matching and

several interesting solutions are available. This chapter focuses on the use of projection oper-
ators on a one-dimensional space to solve the task: synthetic discriminant functions (SDFs).
These projection operators can be optimized to control off peak filter response balancing the re-
quirements of sharp peaks and limited sensitivity to noise while maintaining a constant response
over the patterns of a given class.

keywords: synthetic discriminant function, filter off peak response, non-orthogonal image
expansion, least squares synthetic discriminant function.
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6.1 Maximizing SNR over class samples

In this section we start to address the problems arising from intrinsic signal variability. We no
longer limit ourselves to the the problem of detecting a single, deterministic signal corrupted
by noise, and we move to the problem of detecting a class of signals in the presence of noise.
The signals we will consider are images of faces, a class of patterns of significant practical
and theoretical interest. The dataset we will be using comprises 800 different faces, equally
distributed over four differents races and the two genders.

1basepath <- "../ theFaceDbs/races"

2racesImages <- scan(file.path(basepath , "racesImageNames "), list (""))[[1]]

3N <- length(racesImages)

4m <- animask (5,13,21,25)

5d <- 21*25

6raceSamples <- c()

7raceSamplesMatrix <- array(0, dim=c(N,d))

8for(i in 1:N) {

9... img <- as.animage(getChannels(read.pnm(file.path(basepath ,

10... racesImages [[i]]))))

11... img <- ia.get(img , m)

12... raceSamples <- c(img , raceSamples)

13... raceSamplesMatrix[i,] <- as.real(img@data)

14... }

It is interesting to note the result of clustering the above data respectivel with 4 clusters,
the number of races considered, and with 8 clusters the number of races times the number of
genders:

1kns <- list (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32)

2kcs <- ia.map(function(n) sort(clara(raceSamplesMatrix , n)$i.med), kns)

3k32 <- raceSamplesMatrix[kcs [[16]] ,]

The default metrics used by function clara is the Euclidean norm (L2) discussed in a previous
chapter. Samples are regularly (consecutively) organized in groups of 200 items, 100 males and
100 females. The above clustering procedure, of which we reported the indices identifying each
computed cluster within the original data, assigns 1 cluster center to each race (or race and
gender) group.

1tm.dev(" figures/fourClusters", width=6, height =2)

2par(mfrow = c(1,4))

3for(i in kcs [[2]]) {

4... ia.show(raceSamples [[i]])

5... }

6dev.off()

7tm.dev(" figures/eightClusters", width=6, height =4)

8par(mfcol = c(2,4))

9for(i in kcs [[4]]) {

10... ia.show(raceSamples [[i]])

11... }

12dev.off()

As detailed in Section TM:6.1, the optimal matched filter for the whole image set is given by
the dominant eigenvector. Let us note that, in this case, the required covariance matrix is the
not-centered one:

Σ = XTX (6.1)

where X is a matrix whose rows correspond to our face images, linearized as vectors:
1var <- t(raceSamplesMatrix) %*% raceSamplesMatrix

The computation of the eigenvectors is straightforward:
1evs <- eigen(var)

2# and we de-linearize the most significant twos

3# into an image
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Figure 6.1: The images corresponding to the centers of the four cluster result. They belong to
the four different racial groups, suggesting that the task of race discrimination can be effectively
solved by template matching techniques using appropriately selected race prototypes.

4ev1 <- as.animage(x <- array(evs$vectors [,1], dim=c(25 ,21)))

5ev2 <- as.animage(x <- array(evs$vectors [,2], dim=c(25 ,21)))

6tm.dev(" figures/evs", width=6, height =6)

7par(mfcol = c(2,2))

8ia.show(ev1)

9ia.show(ia.scale(ia.mult(ev1 , -1)))

10ia.show(ev2)

11ia.show(ia.scale(ia.mult(ev2 , -1)))

12dev.off()

6.2 Multi-class Synthetic Discriminant Functions

Synthetic discriminant functions, SDFs for short, are introduced in Chapter TM:6.1 as a way
to generate a single direction onto which samples from a given set project (more or less) at
the same, predefined point. The construction of an SDF relies on the possibility of solving a
linear set of equations obtained by enforcing the projection values of a given set of patterns:
the solution can be expressed as a linear combination of the available samples. There are two
related effects that we want to explore:

1. the distribution of the projection values obtained from patterns of the same class but not
explicitly used in building the SDF, and the dependency of its spread on the number of
sampels used in the SDF;

2. how does an SDF compares with projection onto the (scaled) mean sample, both visually
and interms of the resulting distribution of projection values.

In order to investigate the first issue, we build a sequence of SDFs, using as building samples
the centers of an increasing number of clusters computed from the whole set of available faces
(using function clara from package cluster). We build a least squares SDF minimizing the
projection error onto the whole face dataset.

1ks <- 1:32

2breaks <- seq (0.4 ,1.5 ,0.05)

3map <- array(0, dim=c(length(breaks)-1, length(ks)))

4for(k in 1: length(ks)) {

5... sdf <-tm.sdf(t(clara(raceSamplesMatrix , ks[k]) $medoids),

6... t(raceSamplesMatrix ))

7... map[,k]<-hist(raceSamplesMatrix %*% sdf ,breaks=breaks ,main=k)$counts

8... }

9tm.dev(" figures/sdfVsSamples ")
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Figure 6.2: The images corresponding to the centers of the eight cluster result. The remark of
Figure 6.1 still applies. Interestingly, the upper row presents male samples, the lower row female
examples: even the task of automatic gender determination seems to be solvable with template
matching techniques. Chapter TM:12 addresses the race/gender discrimination problem using a
couple of techniques related to template matching: regularization network and support vector
machines.

10persp(seq (0.425 , 1.5, 0.05), 1:32, map , theta = 30, phi = 20,

11... shade = 0.7, expand = 0.75, r = 3, lwd=0.1, ylab=" Clusters",

12... ticktype =" detailed",cex=0.5,tcl=-0.5, xlab=" Projection value",zlab=" counts ")

13dev.off()

The second issue can be addressed in a straightforward way: we compute the average face, the
least squares SDF based on a single cluster description, and the least sqaures SDF based on a
32 cluster description:

1n <- dim(raceSamplesMatrix )[1]

2mean <- raceSamplesMatrix [1,]

3for(i in 2:n)

4... mean <- mean + raceSamplesMatrix[i,]

5mean <-mean / n

6sdf.m <-tm.sdf(t(matrix(mean , nrow =1)), t(raceSamplesMatrix ))

7sdf.1 <-tm.sdf(t(clara(raceSamplesMatrix ,1) $medoids),t(raceSamplesMatrix ))

8sdf.32<-tm.sdf(t(clara(raceSamplesMatrix ,32) $medoids),t(raceSamplesMatrix ))

9#

10tm.dev(" figures/meanVsSdf", width=6, height =4)

11par(mfrow = c(2,3))

12hist(raceSamplesMatrix %*% sdf.m, breaks=seq (0.4 ,1.5 ,0.05) ,

13... xlab="proj.", main ="")

14hist(raceSamplesMatrix %*% sdf.1, breaks=seq (0.4 ,1.5 ,0.05) ,

15... xlab="proj.", main ="")

16hist(raceSamplesMatrix %*% sdf.32, breaks=seq (0.4 ,1.5 ,0.05) ,

17... xlab="proj.", main ="")

18sdf.m.i <- as.animage(array(sdf.m, dim=c(25 ,21)))

19sdf.1.i <- as.animage(array(sdf.1, dim=c(25 ,21)))
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Figure 6.3: The two most significant eigenvectors of the uncentered covariance matrix. The
most significant one (first column to the left) resembles the average face. Let us note that there
is an ambiguity on sign: the lower row contains the inverted version of the first row (returned as
eigenvectors). In this case, we should use the inverted, most significant eigenvector as matched
filter.

20sdf .32.i <- as.animage(array(sdf.32, dim=c(25 ,21)))

21ia.show(ia.scale(sdf.m.i),main="sdf (mean )")

22ia.show(ia.scale(sdf.1.i),main="sdf (1)")

23ia.show(ia.scale(sdf .32.i),main="sdf (32)")

24dev.off()

As we can observe in Figure 6.5, the difference between sdf.m and sdf.1 is minor, but sdf.32
results in a significantly different filter providing superior performance. The dispersion of the
projection values around the required value (i.e. 1) can be easily quantified by computing the
variance of the values:

1var(raceSamplesMatrix %*% sdf.m)

1[,1]

2[1,] 0.03348178

1var(raceSamplesMatrix %*% sdf.1)

1[,1]

2[1,] 0.03331501

1var(raceSamplesMatrix %*% sdf .32)

79



1[,1]

2[1,] 0.005619665

from which we see that there is almost an order of magnitude of difference.
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Figure 6.4: By using an increasing number of meaningful samples we are able to build an
increasingly better SDF as can be seen from the progressively more peaked projection value
distribution. The highly dispersed distribution closer to view, resulting from the SDF built
using a single template, means that projecting onto this SDF is not going to be effective: in
order to detect a good percentage of faces we need to use a high tolerance threshold, so that
many false positives are to be expected. The situation is significantly better when using the
SDF built from 32 samples.
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Figure 6.5: SDFs provide an efficient way to compact the information from several samples
into a single projection direction. The first image to the left is the average face: even if all
images have been previously normalized by fixing eyes location, the remaining facial features
appear blurred due to their position variability. The central image is the sample minimizing
the Euclidean distance from all the other ones: is is the single cluster center returned by clara.
The image to the right is the synthetic template generated by a least squares SDF built from
the linear combination of 32 cluster centers.
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Chapter7
Matching Linear Structure: the Hough
Transform

Finding simple shapes, such as lines and circles, in images may look like a simple task but
computational issues coupled with noise and occlusions require some not so naive solutions.

In spite of the apparent diversity of lines and areas, it turns out that common approaches to
the detection of linear structures can be seen as a an efficient implementation of matched filters.
The chapter describes how to compute salient image discontinuities and how simple shapes
embedded in the resulting map can be located with the Radon/Hough transform.

keywords: edge detection, Radon transform, Hough transform, generalized Hough trans-
form, fixed-band estimator.
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7.1 Edge detection

Many patterns can be profitably represented by means of curves (as opposed to areas). Two
new problems arise: how a reliable line based representation of a pattern can be obtained and
how such representations can be exploited to efficiently find and compare patterns. In this
section we describe a method to derive this kind of representations from a generic image, while
the next sections will focus on how such a representation can be exploited to detect patterns in
a robust and efficient way.

A basic way to obtain a line drawing from any image is to detect points of significant
gradient intensity. The presence of noise makes the task more difficult as noise originates
spurious intensity variations. In order to discriminate in a reliable way real gradients from noise
originated ones we must have an estimate of the gradient intensity due to noise, and this is
related to the amount of noise. In many cases the amount of noise itself is not known and we
must estimate it from image data whose structure (distribution) is not necessarily known.

1sampleimages <- file.path(system.file(package ="TeMa"),

2... "sampleimages ")

3face <- ia.scale(as.animage(getChannels(read.pnm(

4... file.path(sampleimages , "sampleFace_01.pgm")))),

5... 255)

6face@outside <- 255

7nface <- tm.addNoise(face , scale = 2.0, clipRange = c(0 ,255))

This is a good place where robust scale estimators can be profitably used. As Intermezzo TM:7.1
points out, we can get an estimate of noise standard deviation by computing the L2 norm of
the convolution with a zero sum, unitary norm high pass filter kernel such as −1/

√
2, 1/
√

2:
1sqrt(

2... var(

3... as.real(

4... ia.frame(ia.convolution(nface ,

5... array(c(0, -1/sqrt(2), 1/sqrt (2)),c(1,3))),

6... 3)@data )))

1[1] 8.67417

but the returned value is way too high. The reason is that the image contains structure: it
is not just a uniform value plus noise. However, at least in this specific case, we can consider
the amount of image structure as a perturbation of a uniform surface as significant detail is
restricted to a small percentage of the whole area. We can then use a robust scale estimator
such as the mad to automatically get rid of it, obtaining a much more reliable estimate of the
noise level:

1mad(ia.frame(ia.convolution(nface , array(c(0, -1/sqrt(2),

2... 1/sqrt (2)),c(1,3))), 3)@data)

1[1] 1.941272

that results in a much closer value. Function tm.estimateNoiseLevel relies on the above
estimator. A simplified version of the method described in Section TM:7 is implemented by
function tm.edgeDetection whose inner workings can be controlled by its several parameters.

While thresholding gradient magnitude to get rid of spurious edges is necessary it is not
sufficient as illustrated in Figure 7.1:

1e1 <- tm.edgeDetection(nface ,1,alpha =0.001 , onlyFirstThr = TRUE)

2e2 <- tm.edgeDetection(nface ,1,alpha =0.001 , onlyFirstThr = FALSE)

3tm.dev(" figures/edgeDetection1", width=6, height =2)

4par(mfrow = c(1,3))

5ia.show(e1)

6ia.show(ia.greater(e2, 0))

7ia.show(e2)

8dev.off()
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Figure 7.1: Reliable edge detection must take into account non local information to get rid of
spurious edges. The image to the left is generated by simple gradient threhsolding: too many
pixels get classified as edges. The edge map to the right is computed taking into account the
expected response of the second derivative at the pixels that pass the simple gradient intensity
test. The analysis of the second derivative provides additional information: the spacing of the
extrema is related to the blurring of the detected edges and can be exploited to further filter
them, e.g. to create different edge maps representing different image structures. The intensity
value of edge pixels is proportional to the second derivative extrema spacing.

1e3 <- tm.edgeDetection(nface , 2,alpha =0.001 , onlyFirstThr = FALSE)

2e4 <- tm.edgeDetection(nface , 4,alpha =0.001 , onlyFirstThr = FALSE)

3e5 <- tm.edgeDetection(nface , 8,alpha =0.001 , onlyFirstThr = FALSE)

4e6 <- tm.edgeDetection(nface ,16,alpha =0.001 , onlyFirstThr = FALSE)

5tm.dev(" figures/edgeDetection2", width=6, height =6)

6par(mfrow = c(2,2))

7ia.show(ia.greater(e3 ,0), main="Scale = 2")

8ia.show(ia.greater(e4 ,0), main="Scale = 4")

9ia.show(ia.greater(e5 ,0), main="Scale = 8")

10ia.show(ia.greater(e6 ,0), main="Scale = 16")

11dev.off()

7.2 The Hough Transform

The Hough transform is an efficient way to perform template matching when the pixel repre-
sentation of the templates is at the same time sparse (only a fraction of the pixels in the image
are representative) and at the same time continuous so that local directional information can
be used to focus the update of the cells in accumulator space. The equivalent template in image
space can be obtained by backprojecting a single cell into image space.

The detailed shape of the resulting template is not obvious even in simple cases such as line
detection using the normal parametrization (see Figure 7.3).

1tm.dev(" figures/houghImageSpaceLineTemplates", width=6, height =6)

2tm.houghImageSpaceClean ()

3tm.houghLineCell (512, 300,tm.rad(20), 10,tm.rad (10) ,20)

4tm.houghLineCell (512, 300,tm.rad(110),10,tm.rad (5) ,20)

5tm.houghLineCell (512, 300,tm.rad(210),10,tm.rad (0.1) ,20)

6dev.off()

1img <- animage(matrix(data = 0, nrow=33,ncol =33), storage = "real",

2... focus = c(-16L,-16L))

3noisyImg <- tm.addNoise(ia.mult(img , 0), noiseType =" normal", scale =0.4)

4#

5# compute the standard Hough transform

6#
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Figure 7.2: The scale parameter of tm.edgeDetection allows us to investigate the edge struc-
ture at different scales, effectively exploring a resolution space.

7h <- tm.houghTransform(noisyImg , 33, 16, view = FALSE)

8#

9# and transform counts into probability

10#

11hmap <- tm.mapHoughTransform(noisyImg , 33, 16, 0.4, view = FALSE)

12#

13tm.dev(" figures/houghMap", width =6)

14tm.houghPlot(noisyImg , h, hmap)

15dev.off()
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Figure 7.3: The finite extent of a cell in Hough space determines the image space region providing
support to the corresponding accumulator. The image shows the image space templates resulting
from the normal line representation for increasing angular resolution. The lower the angular
resolution the more butterfly like the template.
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Figure 7.4: The accumulator provided by the Hough transform can be interpreted in a proba-
bilistic way if the distribution of image noise is known. The figure shows the noisy image with
a single line (left), the Hough accumulator (middle), and the resulting probability map (right).
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Mannigfaltigkeiten. Ber. Verh. Sächs. Akad., 69:262–277, 1917.
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Chapter8
Low Dimensionality Representations and
Matching

This chapter investigates the possibility of alternative ways to represent iconic data so that a
large variety of images can be faithfully described using vectors of reduced dimensionality.

Besides significant storage savings, these approaches provide significant benefits to template
detection and recognition algorithm, improving their efficiency and effectiveness. Three main
approaches are considered: principal components analysis (PCA), independent components
analysis (ICA), and linear discriminant analysis (LDA). Probabilistic and kernel variants of PCA
are described and criteria for choosing the optimal representation dimensionality are discussed.
The basics of ICA are provided and Bayesian and classification tuned versions of LDA presented.
An application of PCA to the synthesis of facial images and mug-shot database browsing is
discussed.

keywords: principal components analysis, independent components analysis, linear dis-
criminant analysis, kernel PCA, dimensionality reduction, image retrieval.

contains material from Template Matching Techniques in Computer Vision: Theory and Practice, Roberto
Brunelli, © 2009 John Wiley & Sons, Ltd



8.1 Principal component analysis

One of the drawbacks of template matching is its high computational cost which is related to
the resolution of the images being compared. It is then of interest finding a lower dimensionality
representation that:

• allows us to represent them faithfully with a reduced set of numbers

• allows us to compare them, at least approximately, using their low dimensionality repre-
sentation

The most widely used transform satisfying the above constraints is principal component anal-
ysis (PCA): a translation and rotation of the original coordinate system, providing a set of
directions sorted by decreasing contribution to pattern representation. It is a pattern specific
representation that, in many cases of practical interest, allows us to use a limited subset of
directions to approximate well the pattern. The better the require approximation, the higher
the number of directions required.

We now read a set of 800, geometrically normalized, grey images representing faces from
multiple races. We then create two different vectorized sets, extracting the central face region
(raceSample1) and an extended set with additional 8 congruent images at 1 pixel distance
(raceSample9).

1racesImages <- scan ("../ theFaceDbs/races/imageNames", list (""))[[1]]

2raceSamples1 <- array(0, dim=c(800, 525))

3raceSamples9 <- array(0, dim=c(800*9 , 525))

4#

5idx <- 0

6for(i in 1:800) {

7... a <- getChannels(read.pnm(paste ("../ theFaceDbs/races", racesImages [[i]],

8... sep ="/")))

9... raceSamples1[i,] <- ia.get(as.animage(a), animask (5 ,13 ,21 ,25)) @data

10... for(dy in -1:1) {

11... for(dx in -1:1) {

12... idx <- idx+1

13... raceSamples9[idx ,] <- ia.get(as.animage(a), animask (5+dx ,13+dy ,21 ,25)) @data

14... }

15... }

16... }

We can now compute the covariance matrices and, using the singular value decomposition,
determine its eigenvalues representing the variance described by each direction

1mycov1 <- cov(raceSamples1)

2mysvd1 <- fast.svd(mycov1)

3mycov9 <- cov(raceSamples9)

4mysvd9 <- fast.svd(mycov9)

generating a comparative plot
1tm.dev(" figures/pca1")

2plot(log(mysvd1$d [1:525]) , type="l", lty=1, xlab=" component", ylab="log(variance )")

3lines(log(mysvd9$d [1:525]) , type="l", lty=2, xlab=" component", ylab="log(variance )")

4grid()

5legend (200, 0, c(" raceSamples1", "raceSamples9 "), lty =1:2)

6dev.off()

The eigenvectors, or eigenfaces in this case, can be obtained directly from the singular value
decomposition and de-linearized restoring the spatial layout of the images they derive from

1tm.dev(" figures/eigenfaces", width=16, height =8)

2par(mfrow=c(2,3),lwd =0.5)

3ia.show(ia.scale(as.animage(array(mysvd1$u [,1], dim=c(25 ,21)))))

4ia.show(ia.scale(as.animage(array(mysvd1$u [,2], dim=c(25 ,21)))))

5ia.show(ia.scale(as.animage(array(mysvd1$u [,3], dim=c(25 ,21)))))
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Figure 8.1: The variability of patterns impacts on the number of principal components required
to approximate them well. The plot compares the two sets raceSamples1 and raceSamples9:
as the variability of the latter is greater than that of the former, the variance captured by the
principal directions decreases slowlier.

6ia.show(ia.scale(as.animage(array(mysvd9$u [,1], dim=c(25 ,21)))))

7ia.show(ia.scale(as.animage(array(mysvd9$u [,2], dim=c(25 ,21)))))

8ia.show(ia.scale(as.animage(array(mysvd9$u [,3], dim=c(25 ,21)))))

9dev.off()

and the first three eigenfaces from raceSamples1 and raceSamples9 are shound in Figure 8.2.
The required number of principal components depends on the specific task considered, and

on the required performance. In some cases, the appropriate number can be determined by
inspection of the values of the variance captured by the different directions. One such a case
is that of images corrupted by noise. Usually, in the case of patterns not corrupted by noise,
the variance associated to the different directions decreases quickly. When noise is present, i.e.
white noise, its contribution may dominate the lowest variance directions. This is particularly
evident for white noise, characterized by a constant variance for all directions, due to its spherical
distribution. We are then interested in determining the cross point at which the contribution
of the signal starts to be dominated by the noise.

We generate a set of pure noise images using two different types of noise: uniform and
normal.

1nu <- array(runif (800*525 , min=-0.1,max=0.1), dim=c(800 ,525))

2ng <- array(rnorm (800*525 , sd=0.05) , dim=c(800 ,525))

We can now perform PCA separately on the set of images corrupted by uniform noise
1uSamples <- raceSamples1 + nu

2mycovU <- cov(uSamples)

3mysvdU <- fast.svd(mycovU)

and on the set of images corrupted by normal noise with a standard deviation of 0.05
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Figure 8.2: A good estimate of the covariance matrix is key to perform meaningful PCA.
While the MLE sample estimate is commonly employed, it is far from optimal in the high
dimensionality/few samples case.

1gSamples <- raceSamples1 + ng

2mycovG <- cov(gSamples)

3mysvdG <- fast.svd(mycovG)

and with a standard deviation of 0.025
1gSamples2 <- raceSamples1 + ng/2

2mycovG2 <- cov(gSamples2)

3mysvdG2 <- fast.svd(mycovG2)

1tm.dev(" figures/pca2", height =4.5)

2plot(log(mysvd1$d [1:520]) , type="l", lty=1, xlab=" component", ylab="log(variance )")

3lines(log(mysvdU$d [1:520]) , lty=2)

4lines(log(mysvdG$d [1:520]) , lty=3)

5lines(log(mysvdG2$d [1:520]) , lty=4)

6grid()

7legend(0,-10, c("no noise", "uniform [-0.1,0.1]",

8... "normal (sd=0.05)" , "normal (sd=0.025)") ,

9... lty=c(1,2,3,4))

10dev.off()

Let us define a simple indicator function following the description of Section TM8.1.2
1tm.indf <- function(ls, d, N){

2... vs <- array(0, dim=c(d))

3... for(k in 1:d) {

4... s <- 0

5... for(j in (k+1):d) {

6... s <- s + ls[k]

7... }

8... vs[k] <- sqrt(s/(N*(d-k)))*(1/((d-k)*(d-k)))

9... }

10... vs

11... }

and apply it to the eigenvalues sets just computed:
1tm.dev(" figures/pca3", height =4.5)

2plot(tm.indf(mysvd1$d , 450, 800)[10:200] , type="l", lty=1, xlab=" component",

3... ylab="IND")

4lines(tm.indf(mysvdU$d , 450, 800)[10:200] , lty=2)
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5lines(tm.indf(mysvdG$d , 450, 800)[10:200] , lty=3)

6lines(tm.indf(mysvdG2$d , 450, 800)[10:200] , lty=4)

7grid()

8legend (25,4e-8, c("no noise", "uniform [-0.1,0.1]",

9... "normal (sd=0.05)" , "normal (sd=0.025)") ,

10... lty=c(1,2,3,4))

11dev.off()

Figure 8.3: Increasing amounts of noise modify the eigenvalue distribution and anticipate the
cross over point of the signal to noise ratio: the trend is correctly modeled by the minimum of
the indicator function.

8.2 James-Stein estimation

It may be worthwile to perform a simple simulation to check the potential advantage of using
non standard estimators for the covariance matrix, the key quantity in PCA, in the case of large
dimensionality and small number of samples.

1# small n, large p

2#

3p <- 625 ; n <- 400

4#

5# generate random pxp covariance matrix

6#

7sigma <- matrix(rnorm(p*p),ncol=p)

8sigma <- crossprod(sigma)+ diag(rep(0.01, p))

9#

10# simulate multinormal data of sample size n

11#

12sigsvd <- svd(sigma)

13Y <- t(sigsvd$v %*% (t(sigsvd$u) * sqrt(sigsvd$d )))

14X <- matrix(rnorm(n * ncol(sigma)), nrow = n) %*% Y

Having generated our data sample we compute the covoriance matrix using the usual sample
estimator and the shrinkage estimator:

1sSample <- cov(X)

2sShrinkage <- cov.shrink(X)

and proceed to the computation of the eigenvalues:
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1eTrue <- eigen(sigma , symmetric=TRUE)$values

2eSample <- eigen(sSample , symmetric=TRUE)$values

3eShrinkage <- eigen(sShrinkage , symmetric=TRUE)$values

4m <-max(eTrue , eSample , eShrinkage)

5yl <- c(0, m)

As reported in Figure 8.4, the advatange of shrinkage estimators over the standard ones can be
dramatic.

1tm.dev(" figures/pca4", width =15)

2par(mfcol=c(1,3),lwd =0.5)

3plot(eSample [1:200] , main=" empirical",ylab=" eigenvalue", type="l")

4plot(eShrinkage [1:200] , ylim=yl, main="full shrinkage",ylab="", type="l")

5plot(eTrue [1:200] , ylim=yl, main="true",ylab="", type="l")

6grid(lwd =0.1)

7dev.off()

Figure 8.4: A good estimate of the covariance matrix is key to perform meaningful PCA.
While the MLE sample estimate is commonly employed, it is far from optimal in the high
dimensionality/few samples case.
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Chapter9
Deformable Templates

There are cases that are not easily reduced to pattern detection and classification. One such a
case is the detailed estimation of the parameters of a parametric curve. Another important

case is the comparison of anatomical structures, such as brain sections. Instead of modeling
the variability of the patterns within a class as a static multidimensional manifold, we may
focus on the constrained deformation of a parameterized model and measure similarity by the
deformation stress. The chapter analyzes the Hough transform from a dynamical perspective:
shapes are attracted from image feature maps acting as physical potential fields. Active shape
models, integrating textural and geometrical information, are a natural and efficient extension
that benefits from the usage of PCA techniques. The possibility of establishing a dense corre-
spondence field between the pixels of different images opens the way to interesting morphing
applications in medical analysis and computer graphics animation.

keywords: potential field, deformable templates, active shape models, diffeomorphic match-
ing, optical flow.

contains material from Template Matching Techniques in Computer Vision: Theory and Practice, Roberto
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Chapter10
Computational Aspects of Template
Matching

The drawback of template matching is its high computational cost which has two distinct
origins. A first source of complexity is the necessity of using multiple templates to ac-

commodate the variability exhibited by the appearance of complex objects. A second source
of complexity is related to the representation of the templates: the higher the resolution, i.e.
the number of pixels, the heavier the computational requirements. Besides some computational
tricks, like early jump-out techniques and the use of integral images, this chapter presents more
organized, structural ways to improve the speed at which template matching can be performed:
hierarchical matching, metric inequalities, FFT techniques, incremental PCA, and combined
approaches. Another important aspect of template matching is the possibility of sub-pixel
accuracy: perturbative image expansion and phase correlation techniques are discussed.

keywords: jump-out, hierarchical matching, FFT correlation, metric inequalities, phase
correlation, sub-pixel matching.

contains material from Template Matching Techniques in Computer Vision: Theory and Practice, Roberto
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10.1 Hierarchical matching

One of the simplest way to speed up the process of template matching is that of working at
different image resolutions, starting from the lowest resolution at which the template can be
discriminated, and progressively focusing the computation when increasing image resolution to
the most promising candidates.

The basic structure needed to implement a hierarchical matching strategy is that of the
resolution pyramid. We can build it starting from the highest available resolution, progressively
smoothing and undersampling the current level to avoid aliasing artifacts.

The same procedure must be applied to the template.
In order to spot our template, we start from the lowest resolution level, generating a filter

mask containing the most promising locations.
We then iterate the process of zooming the mask, slightly enlarging it, and computing the

correlation value only at the corresponding image positions.
As the process relies on a thresholding operation in order to compute the mask constraining

the computation, the distribution of the correlation values at the different levels of the pyramid
should be considered. The figure reports the distribution of the correlation values (obtained
without any filtering mask) at three levels. The plots clearly show that they differ, the distri-
butions from the low resolution levels being suggestive of decreased discrimination capability
of the correlation values. The threshold used in the computation of the mask should then be
more strict at the first levels. However, as we want to be sure that we are not loosing any valid
location and the number of computations is small, it is usually better not to use a (too) high
threhsold.

Codelet 6 Hierachical template matching (../TeMa/R/tm.hierarchicalMatching.R)

This function illustrates how we can achieve a significant speed up in correlation matching by using a multiresolution strategy:
we

1tm.hierarchicalMatching <- function(I, T, levels = 3, thr = 90) {

We keep track of the original position of the image region of interest:

2ofocus <- I@focus

and consider it (temporarily) as our new coordinate origin

3I@focus <- c(0L, 0L)

4T@focus <- c(0L, 0L)

The first step is to build the multiresolution representations of the image and of the template by carefully smoothing them
at each resolution step before subsampling them:

5pyrI <- tm.gaussianPyramid(I, levels)

6pyrT <- tm.gaussianPyramid(T, levels)

The first element of the resolution list (the pyramid) is the one at the lowest resolution and we create the corresponding
computation filter encompassing all pixels:

7mask <- as.animage(array(1, dim(pyrI [[1]] @data )))

When we map the mask to the next higher resolution level we want to slightly enlarge it to avoid missing the right template
position. Mathematical morphology provides an easy way to implement the growing operation by means of a simple structuring
element and using the ia.mmBitDilation function:

8eltA <- animage(array(1L, c(3,3)), focus=c(-1L,-1L))

We start from the lowest resolution level,

9for(l in 1: levels) {

performing correlation only an selected pixels

10cor <- ia.correlation(pyrI[[l]], pyrT[[l]], filter=mask )[[1]]
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and compute the mask for the next (higher) resolution level:

11mask <- ia.integerAnimage(ia.greater(cor , thr))

12mask <- ia.realAnimage(ia.pzoom(ia.mmBitDilation(mask , eltA), 2L, 2L))

13}

finally returning the correlation map, at the correct position in the original coordinate system:

14cor@focus <- ofocus

15}

The following code shows a sample application
1sampleimages <- file.path(system.file(package ="TeMa"),

2... "sampleimages ")

3face <- ia.get(ia.scale(as.animage(getChannels(read.pnm(

4... file.path(sampleimages , "sampleFace_01.pgm")))),

5... 255), animask (10 ,60 ,128 ,128))

6eye <- ia.get(face , animask (40 ,92 ,32 ,32))

7hcor <- tm.hierarchicalMatching(face , eye)
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Chapter11
Matching Points Sets: the Hausdorff distance

Matching sets of points using techniques targeted at area matching is far from optimal,
regarding both efficiency and effectiveness. This chapter shows how to compare sparse

templates, composed by points with no textural properties, using the Hausdorff distance. Ro-
bustness to noise and template deformation as well as computational efficiency are analyzed.
A probabilistic perspective on Hausdorff matching is briefly discussed. Invariant moments, a
classical technique for shape matching is also considered.

keywords: Hausdorff distance, invariant moments, distance transform, metric pattern
space, principal components analysis.
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11.1 Hausdorff matching

Binary image templates can be considered as a set of points and their similarity assessed by
means of an appropriate point set distance, the Hausdorff distance or its variation, the directed
Hausdorff distance. The latter can be computed efficiently using the Euclidean distance trans-
form, a transform that associates to each background image pixel its distance from the closest
foreground image pixel. Once the distance transform has been computed, computation of the
directed Hausdorff distance can be accomplished by looking at the distance transform value at
the pixels representative of the point set.

The resulting set of distance values can be used to compute several variations of the ba-
sic definition by taking the maximum, the average, or any specified quantile, improving the
robustness of the matching score.

We illustrate it using one of the available sample images and adding noise to it:
1sampleimages <- file.path(system.file(package ="TeMa"),

2... "sampleimages ")

3face <- ia.get(ia.scale(as.animage(getChannels(read.pnm(

4... file.path(sampleimages , "sampleFace_01.pgm")))),

5... 255), animask (10 ,60 ,90 ,90))

6face@outside <- 255

7nface <- tm.addNoise(face , scale = 1.0, clipRange = c(0 ,255))

8eface <- tm.edgeDetection(nface ,2, alpha =0.01, onlyFirstThr = FALSE)

As template, we get the eye of the image without noise:
1eye <- ia.get(face , animask (32 ,92 ,50 ,30))

2eeye <- tm.edgeDetection(eye ,2, alpha =0.01, onlyFirstThr = FALSE)

and compute several variations of the partial Hausdorff distance
1h1 <- tm.hausdorffMatching(eface , eeye , distance ="max")

2h2 <- tm.hausdorffMatching(eface , eeye , distance =" average ")

3h3 <- tm.hausdorffMatching(eface , eeye , distance ="rank", q=0.7)

4h4 <- tm.hausdorffMatching(eface , eeye , distance ="rank", q=0.95)

reporting the results in Figure 11.1.
1tm.dev(" figures/hausdorffMatching", width=6, height =6)

2par(mfrow = c(2,2))

3ia.show(h1, main = "Max")

4ia.show(h2, main = "Average ")

5ia.show(h3, main = "Rank (0.7)")

6ia.show(h4, main = "Rank (0.9)")

7dev.off()
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Figure 11.1: The Hausdorff partial distance is a flexible technique to compare templates rep-
resented by sets of points. The template would be located at the darkest point, the one with
the lowest distance. The figures shows that using the max version may not be always the best
choice.
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Chapter12
Support Vector Machines And Friends

When the probability distribution of the templates is unknown, the design of a classifier be-
comes more complex and many critical estimation issues surfaces. This chapter presents

basic results upon which two interrelated, powerful classifier design paradigms stand: regular-
ization networks and support vector machines (SVMs). Several practical hints on how to best
use SVM classifiers are described. The techniques are applied to the tasks of gender and race
classification based on face images.

keywords: regularization networks, support vector machines, virtual set method, reproduc-
ing kernel Hilbert space.

contains material from Template Matching Techniques in Computer Vision: Theory and Practice, Roberto
Brunelli, © 2009 John Wiley & Sons, Ltd



142



Bibliography

[1] H Ai, L Liang, and G Xu. Face detection based on template matching and support vector
machines. In Proc. of the International Conference on Image Processing (ICIP’01), vol-
ume 1, pages 1006–1009, 2001.
http://dx.doi.org/10.1109/ICIP.2001.959218.

[2] KP Bennett and EJ Bredensteiner. Duality and geometry in SVM classifiers. In Proc. of
the 17th International Conference on Machine Learning (ICML’00), pages 57–64, 2000.

[3] CJC Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2:121–167, 1998.
http://dx.doi.org/10.1023/A:1009715923555.

[4] C-C Chang and C-J Lin. LIBSVM: a library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/cjlin/libsvm.

[5] J-H Chen. M-estimator based robust kernels for support vector machines. In Proc. of the
17th IAPR International Conference on Pattern Recognition (ICPR’04), volume 1, pages
168–171, 2004.
http://dx.doi.org/10.1109/ICPR.2004.1334039.

[6] F Cucker and S Smale. Best choices for regularization parameters in learning theory: On
the bias-variance problem. Foundations of Computational Mathematics, 2:413–428, 2002.

[7] T Evgeniou, M Pontil, and T Poggio. Regularization networks and support vector machines.
Advances in Computational Mathematics, 13:1–50, 2000.
http://dx.doi.org/10.1023/A:1018946025316.

[8] R Genov and G Cauwenberghs. Kerneltron: support vector machine in silicon. IEEE
Trans. on Neural Networks, 14:1426–1434, 2003.
http://dx.doi.org/10.1109/TNN.2003.816345.

[9] G Guo, SZ Li, and K Chan. Face recognition by support vector machines. In Proc. of the
4th International Conference on Automatic Face and Gesture Recognition (FG’00), pages
196–201, 2000.
http://dx.doi.org/10.1109/AFGR.2000.840634.

[10] B Heisele, P Ho, and T Poggio. Face recognition with support vector machines: global ver-
sus component-based approach. In Proc. of the 8th International Conference on Computer
Vision and Pattern Recognition (ICCV’01), volume 2, pages 688–694, 2001.
http://dx.doi.org/10.1109/ICCV.2001.937693.

143



[11] B Heisele, P Ho, J Wu, and T Poggio. Face recognition: component-based versus global
approaches. Computer Vision and Image Understanding, 91:6–21, 2003.
http://dx.doi.org/10.1016/S1077-3142(03)00073-0.

[12] T Hofman, B Scholkopf, and AJ Smola. Kernel methods in machine learning. Annals of
Statistics, 36:1171–1220, 2008.
http://dx.doi.org/10.1214/009053607000000677.

[13] K Hornik, M Stinchcombe, and H White. Multilayer feedforward network are universal
approximators. Neural Networks, 2:359–366, 1989.

[14] CW Hsu, CC Chang, and CJ Lin. A practical guide to support vector classification.
Technical report, Dept. of Computer Science, National Taiwan University, 2008.

[15] K Jonsson, J Matas, J Kittler, and YP Li. Learning support vectors for face verification and
recognition. In Proc. of the 4th International Conference on Automatic Face and Gesture
Recognition (FG’00), pages 208–213, 2000.
http://dx.doi.org/10.1109/AFGR.2000.840636.

[16] Y Lee, Y Lin, and G Wahba. Multicategory support vector machines: Theory and applica-
tion to the classification of microarray data and satellite radiance data. J. of the American
Statistical Association, 99:67–81, 2004.

[17] SZ Li, Q Fu, L Gu, B Scholkopf, Y Cheng, and H Zhang. Kernel machine based learning for
multi-view face detection and pose estimation. In Proc. of the 8th International Conference
on Computer Vision and Pattern Recognition (ICCV’01), volume 2, pages 674–679, 2001.
http://dx.doi.org/10.1109/ICCV.2001.937691.

[18] Y Li, S Gong, J Sherrah, and H Liddell. Support vector machine based multi-view face
detection and recognition. Image and Vision Computing, 22:413–427, 2004.
http://dx.doi.org/10.1016/j.imavis.2003.12.005.

[19] Z Li and X Tang. Bayesian face recognition using support vector machine and face clus-
tering. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’04), volume 2, pages 374–380, 2004.
http://dx.doi.org/10.1109/CVPR.2004.1315188.

[20] C Lu, T Zhang, R Zhang, and C Zhang. Adaptive robust kernel PCA algorithm. In
Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’03), volume 6, pages 621–624, 2003.
http://dx.doi.org/10.1109/ICASSP.2003.1201758.

[21] C-D Lu, T-Y Zhang, X-Z Du, and C-P Li. A robust kernel PCA algorithm. In Proc.
of the International Conference on Machine Learning and Cybernetics, volume 5, pages
3084–3087, 2004.
http://dx.doi.org/10.1109/ICMLC.2004.1378562.

[22] J Lu, KN Plataniotis, and AN Venetsanopoulos. A kernel machine based approach for
multi-view face recognition. In Proc. of the International Conference on Image Processing
(ICIP’02), volume 1, pages 265–268, 2002.
http://dx.doi.org/10.1109/ICIP.2002.1038010.

[23] J Lu, KN Plataniotis, and AN Venetsanopoulos. Face recognition using kernel direct
discriminant analysis algorithms. IEEE Trans. on Neural Networks, 14:117–126, 2003.
http://dx.doi.org/10.1109/TNN.2002.806629.

144



[24] ME Mavroforakis and S Theodoridis. A geometric approach to support vector machine
(SVM) classification. IEEE Trans. on Neural Networks, 17:671–682, 2006.
http://dx.doi.org/10.1109/TNN.2006.873281.

[25] B Moghaddam and M-H Yang. Learning gender with support faces. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 24:707–711, 2002.
http://dx.doi.org/10.1109/34.1000244.

[26] E Osuna, R Freund, and F Girosi. Training support vector machines: an application to face
detection. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’97), pages 130–136, 1997.
http://dx.doi.org/10.1109/CVPR.1997.609310.

[27] T Poggio and F Girosi. Regularization algorithms for learning that are equivalent to
multilayer networks. Science, 247:978–982, 1990.
http://dx.doi.org/10.1126/science.247.4945.978.

[28] T Poggio and S Smale. The mathematics of learning: dealing with data. Notices of the
AMS, 50:537–544, 2003.

[29] V Popovici. Kernel-based classifiers with applications to face detection. PhD thesis, Ecole
Polytechnique Federale de Lausanne, 2004.

[30] S Romdhani, P Torr, B Scholkopf, and A Blake. Computationally efficient face detection.
In Proc. of the 8th International Conference on Computer Vision and Pattern Recognition
(ICCV’01), pages 695–700, 2001.
http://dx.doi.org/10.1109/ICCV.2001.937694.

[31] H Sahbi and D Geman. A hierarchy of support vector machines for pattern detection. J.
of Machine Learning Research, 7:2087–2123, 2006.

[32] H Sahbi, D Geman, and N Boujemaa. Face detection using coarse-to-fine support vectors
classifiers. In Proc. of the International Conference on Image Processing (ICIP’02), vol-
ume 3, pages 925–928, 2002.
http://dx.doi.org/10.1109/ICIP.2002.1039124.

[33] B Scholkopf, C Burges, and V Vapnik. Incorporating invariances in support vector ma-
chines. In Proceedings of the International Conference on Artificial Neural Networks, vol-
ume 1112 of Lecture Notes in Computer Science, pages 47–52. Springer, 1996.

[34] B Scholkopf and AJ Smola. Learning with Kernels. The MIT Press, 2002.

[35] VN Vapnik. Statistical Learning Theory. Wiley, 1998.

[36] M-H Yang, N Ahuja, and D Kriegman. Face recognition using kernel eigenfaces. In Proc.
of the International Conference on Image Processing (ICIP’00), volume 1, pages 37–40,
2000.
http://dx.doi.org/10.1109/ICIP.2000.900886.

[37] Y Yuan and K Barner. An active shape model based tactile hand shape recognition with
support vector machines. In Proc. of the 40th Annual Conference on Information Sciences
and Systems, pages 1611–1616, 2006.
http://dx.doi.org/10.1109/CISS.2006.286393.

145



146



Chapter13
Feature Templates

Many applications in image processing rely on robust detection of image features and accurate
estimation of their parameters. Features may be too numerous to justify the process of

deriving a new detector for each one. This chapter exploits principal components analysis
to build a single, flexible, and efficient detection mechanism based on the use of composite
rejectors. The complementary aspect of detecting templates considered as a set of separate
features will also be addressed presenting an efficient architecture: a rejector cascade classifier
built by boosting simple, pixel level classifiers applied to a census transformed image.

keywords: parametric feature manifold, AdaBoost, boosting, census transform, multi-class
pattern rejector, constellation matching
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Chapter14
Building a Multi-biometric System

Template matching techniques are a key ingredient in many computer vision systems, ranging
from quality control to object recognition systems among which biometric identification

systems have today a prominent position. Among biometric systems, those based on face
recognition have been the subject of extensive research. This popularity is due to many factors,
from the non invasiveness of the technique, to the high expectations due to the widely held belief
that human face recognition mechanisms perform flawlessly. Building a face recognition system
from the ground up is a complex task and this chapter addresses all the required practical steps:
preprocessing issues, feature scoring, the integration of multiple features and modalities, and
the final classification stage.

keywords: image normalization, speaker identification, score integration, verification, face
recognition, hierarchical matching, robust similarity measures.

contains material from Template Matching Techniques in Computer Vision: Theory and Practice, Roberto
Brunelli, © 2009 John Wiley & Sons, Ltd



154



Bibliography

[1] R Brunelli and D Falavigna. Person identification using multiple cues. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 17:955–966, 1995.
http://dx.doi.org/10.1109/34.464560.

[2] R Brunelli and T Poggio. Face recognition: Features versus templates. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 15:1042–1052, 1993.
http://dx.doi.org/10.1109/34.254061.

[3] JM Gilbert and W Yang. A real time face recognition system using custom vlsi hardware.
In Proc. of Computer Architectures for Machine Perception, pages 58–66, 1993.
http://dx.doi.org/10.1109/CAMP.1993.622458.

[4] AK Jain, P Flynn, and AA Ross, editors. Handbook of Biometrics. Springer, 2007.

[5] AK Jain, K Nandakumar, and A Ross. Score normalization in multimodal biometric systems.
Pattern Recognition, 38:2270–2285, 2005.
http://dx.doi.org/10.1016/j.patcog.2005.01.012.

[6] AK Jain and A Ross. Multibiometric systems. Communications of the ACM, 47:34–40,
2004.
http://dx.doi.org/10.1145/962081.962102.

[7] K Nandakumar, C Yi, SC Dass, and AK Jain. Likelihood ratio based biometric score fusion.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 30:342–347, 2008.
http://dx.doi.org/10.1109/TPAMI.2007.70796.

155



156



AppendixA
AnImAl: a Software Environment for Fast
Prototyping

The process of developing a computer vision system for a specific task often requires the
interactive exploration of several alternative approaches and variants, preliminary param-

eter tuning, and more. This chapter introduces AnImAl, an image processing package written
for the R statistical software system. AnImAl, which relies on an algebraic formalization of
the concept of image, supports interactive image processing by adding to images a self docu-
menting capability based on a history mechanism. The documentation facilities of the resulting
interactive environment support a practical approach to reproducible research.

keywords: reproducible research, interactive programming environment, R, image algebra.
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A.1 The AnImAl environment

The requirements of interactive image processing, particularly during the development of al-
gorithms, are the same as those of the larger statistical community and of the even larger
community of computational science. A good development environment should rely on a high
level programming language with extensive facilities for the manipulation of the most com-
monly used data structures, the possibility of saving the status of a processing session for later
continuation, extensive community support, and means for code verification and high quality
documentation. Another important, often neglected, feature is the possibility of accessing the
source code of the environment and of its libraries so that the appropriateness of the algorithms
underlying the functions provided and the correctness of their implementation can be assessed.
R, a language and environment for statistical computing and graphics, based on the system
described in [7], fulfills all these requirements and has then been chosen as the programming
environment for the implementation the image algebra described in Section TM:A.1. Nearly all
of the algorithms described in the present book have been implemented in the R environment
and are provided as an accompanying set of computer files with extensive documentation and
examples.

What we would like to address in the following paragraphs is the extent to which such a
development environment can support investigation based on the iteration of hypothesize, test,
and refinement cycles, and the accurate reporting of results. The R environment supports se-
lective saving of itself: objects, memory contents, and command history can be saved to be
imported at a later date or visually inspected. The history mechanism provided by AnImAl
extends these facilities by adding self documenting abilities to a specific data structure (the
image) making it even easier to extract the details of every processing step in order to accu-
rately document it. Accurate reporting of results, and of processing work flow, means that
enough information should be provided to make the results reproducible: this is the essence
of reproducible research. Traditional means of scientific dissemination, such as journal papers,
are not up to the task: they merely cite the results supporting the claimed conclusions but
do not (easily) lend themselves to independent verification. A viable solution in the case of
computational sciences is to adopt more flexible documentation tools that merge as far as pos-
sible data acquisition, algorithms description and implementation, and reporting of results and
conclusions. A useful concept is that of compendium: a dynamic document that includes both
literate algorithms description and their actual implementation. The compendium is a dynamic
entity: it can be automatically transformed by executing the algorithms it contains, obtaining
the results commented upon by the literate part of the document. This approach has two sig-
nificant advantages: enough information for the results to be reproducible by the community is
provided, and results reported in the description are aligned to the actual processing work flow
employed.

The R environment provides extensive support for the creation of compendiums: code such
as

sampleLuminance <- ia.averageImageChannels(sample ,

c(1,2,3),

c(21 ,72 ,7))

dens <- density(sampleLuminance@data)

#

tm.dev(" figures/sampleHisto ")

#

hist(sampleLuminance@data ,

xlab = "Intensity", ylab = "Probability",

main = "Luminance histogram and density plot",

probability = TRUE)
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lines(dens , lty = 2)

#

dev.off()

can be freely inserted within the text, with the possibility of hiding it in the final document.
The code can be executed, and its results, be they pictorial (see Figures A.1–A.3), or numeric
(see Table A.1), automatically inserted at the right places.

Figure A.1: The histogram of the luminance channel L of a sample image (computed from the
R, G, and B color channels as L = 0.2126R + 0.7152G + 0.0722B) with overlayed density
information.

Literate algorithm descriptions can be inserted as comments in the source code and auto-
matically extracted and formatted to match high quality scientific publication requirements. We
report a simple example: the definition of an R function, based on AnImAl, for the computation
of the boundaries of shapes in binary images. Insertion in the compendium of the directive
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Dark Midtone Highlight
Dark 8 556 1 330 16
Midtone 1 209 31 156 1 808
Highlight 36 1 599 41 045

Table A.1: Cooccurence of dark, midtone, and highlight pixels

\inputcode {../ AnImAl/R/ia.edge.R}

generates the literate description of the function reported in the next paragraphs by suitably
formatting code and comments included in the function definition file.

Codelet 7 Edge detection for a binary image (../AnImAl/R/ia.edge.R)

This is an example of how the basic bit level logical operators provided by AnImAl can be used to extend its functionalities.
In this particular case we define a new function with name ia_edge and a single argument img:

1ia.edge <- function (img) {

The first step is to check whether image history must be updated in order to produce a coherent image:

2document <- img@document

We momentarily turn off self documentation as we want to consider the current function as a whole and we do not want its
inner workings to be traced by the history mechanism:

3img@document <- FALSE

In this particular case we fix the region of interest of the resulting image to that of the function argument. As subsequent
operations may enlarge we store the initial specification of the region

4img_mask <- ia.mask(img)

A pixel is considered to be an edge pixel if at least one of the pixels to its left, right, top, or bottom belongs to the image
background (value=0):

Ei,j ← (((Ii,j−1 ∧ Ii,j+1) ∧ Ii+1,j) ∧ Ii−1,j) ∧ Ii,j

This logical formula can be easily implemented using the bit level logical operations provided by AnImAl:

5res <- ia.get(ia.and(img ,

6ia.not(ia.and(ia.up(img),

7ia.and(ia.down(img),

8ia.and(ia.left(img),

9ia.right(img)

10))))),

11img_mask)

If required by the configuration of the argument image img we update the history of the result image res to keep it coherent

12if(document) {

In this case, it is necessary to update the tracing flag:

13img@document <- res@document <- document

and to get the new root of the history tree which is given by the current function invocation:

14resh <- match.call()

We then need to expand the node corresponding to img with the corresponding history

15resh$img <- img@history

so that complete history information can be stored in the resulting image:

16res@history <- resh

17}

before returning the final result:

18res }
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An example of the results provided by this function is reported in Figure A.3.
We did not comment so far on how data acquisition fits within the concept of compendium.

Unfortunately this stage is not reproducible unless data result from simulation experiments, a
situation for which the reasoning already exposed can be applied without any modification. The
approach followed in this book is to leverage on the capability of modern graphical rendering
systems to automatically generate high quality imagery on which algorithms are trained and
compared, thereby extending the application of reproducible research ideas to the complete data
flow. The entire Appendix TM:B is devoted to the description of how synthetic, realistic images
of complex objects can be generated. Data synthesis can then be regarded as an additional
function and merging it with an active document does not require the introduction of any new
concept or tool.
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Figure A.2: The R environment provides extensive graphical support that can be applied to
the visualization of AnImAl image data. The plot presents a perspective view of character A
obtained by mapping intensity information to surface height.
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Figure A.3: An example of packed bit images (left) and the result of applying the operator
ia_edge described in the text (right). Parallel processing occurs at two different levels: sim-
ulated, at the PEs which compute the same logical operation on their neighborhood, and real
as each PE computes the same logical operation for all the bit planes at the same time. The
resulting image can then be unpacked providing three separate images, each one containing the
boundary of a single character shape.
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AppendixB
Synthetic Oracles for Algorithm Development

A key need in the development of algorithms in computer vision (as in many other fields) is the
availability of large data sets for training and testing them. Ideally, data sets should cover

the expected variability range of data and be supported by high quality annotations describing
what they represent so that the response of an algorithm can be compared to reality. Gathering
large, high quality data sets is however a time consuming effort. An alternative is available for
computer vision research: computer graphics systems can be used to generate photo-realistic
images of complex environments together with supporting ground truth information. This
chapter shows how these systems can be exploited to generate a flexible (and cheap) evaluation
environment.

keywords: computer graphics, ray tracing, shading language, radiosity, photon mapping,
camera simulation.

contains material from Template Matching Techniques in Computer Vision: Theory and Practice, Roberto
Brunelli, © 2009 John Wiley & Sons, Ltd



B.1 Thematic maps

1tiffdir <- file.path(system.file(package ="TeMa"),

2... "sampleimages ")

Modern computer graphics systems allow us to generate photorealistic images that are hardly
distinguishable from real world imagery. A significant advantage is that, by using a flexible
scene description language we can generate not only optical images, but also perfectly aligned
descriptive maps, providing us, with pixel level precision, information on the object depicted,
its distance from the viewing camera, and also its object centric (UV) coordinates.

This information can be used to implement optical effects on the final rendered image and
to gauge the performance of object detection algorithms in a complete automatic way.

The scripts provided allow you to generate a depth map and a label image:

cd theRenderingWorkshop/povray/visual -lab

./ cameras.sh perspLabel gretag small daylight 1

This result in the generation of two images and which are provided as sample TeMa images (see
Figure B.1). Depth information is stored across the color channels and must be recovered usin
tm.getDepth.

1label <- as.animage(read.pnm(file.path(tiffdir ,

2... "perspLabel_gretag_small_daylight.ppm ")))

3depth <- tm.getDepth(file.path(tiffdir ,

4... "pp_perspLabel_gretag_small_daylight.ppm"),

5... depthScale = 40)

6tm.dev(" figures/maps", width=6, height =3)

7par(mfrow = c(1,2))

8ia.show(label , main=" object map")

9ia.show(depth , main="depth map")

10dev.off()

Figure B.1: It is possible to generate an image where all the pixels of an object have a distinct
color (left) or the distance of the corresponding object point from the camera.

168



B.2 Color rendering

The book did not consider specifically the problem of color template matching. However, as
briefly pointed out in Chapter TM:2, even when monochromatic images are considered, the details
of the full imaging process should be considered. It is possible to generate realistic images of
the same scene under different illuminations:

cd theRenderingWorkshop/povray/visual -lab

./ cameras.sh persp gretag small incandescent 1

./ cameras.sh persp gretag small daylight 1

The resulting images are provided as sample images for package TeMa
1incandescent <- ia.readAnimage(file.path(tiffdir ,

2... "persp_gretag_small_incandescent.tif"))

3daylight <- ia.readAnimage(file.path(tiffdir ,

4... "persp_gretag_small_daylight.tif"))

5#

6tm.dev(" figures/differentLights", width=6, height =3)

7par(mfrow = c(1,2))

8ia.show(incandescent , main=" incandescent ")

9ia.show(daylight , main=" daylight ")

10dev.off()

The two color images are shown in Figure B.2. If we generate the corresponding luminance

Figure B.2: The same scene lit by different illuminants appears different.

images by averaging the color channels
1iL <- ia.scale(ia.add(incandescent [[1]],

2... ia.add(incandescent [[2]],

3... incandescent [[3]])))

4dL <- ia.scale(ia.add(daylight [[1]],

5... ia.add(daylight [[2]],

6... daylight [[3]])))

7#

8tm.dev(" figures/differentLightsMono", width=6, height =6)

9par(mfrow = c(2,2))

10ia.show(iL, main=" incandescent ")

11ia.show(dL, main=" daylight ")

12hist(iL, main=" incandescent",xlab ="")

13hist(dL, ylab="",main=" daylight",xlab ="")

14dev.off()
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we obtain different images (see Figure B.3): monochromatic template matching is affected by
the illumination conditions of the scene.

Figure B.3: Monochromatic images of the same scene under different illumination are different.
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AppendixC
On Evaluation

Evaluation of algorithms and systems is a complex task. This chapter addresses four related
questions that are important from a practical and methodological point of view: what is a

good response of a template matching system, how can we exploit data to train and at the same
time evaluate a classification system, how can we describe in a compact but informative way the
performance of a classification system, and, finally, how can we compare multiple classification
systems for the same task in order to assess the state of the art of a technology.

keywords: ROC analysis, technology evaluation, classifier training, cross-validation, one-
leave-out, bootstrap.
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AppendixD
Template Matching Literature

The literature on template matching is extremely vast. This chapter includes the papers that
have been considered when writing the book. Whenever possible the relevant DOI (digital

object identifier) is also reported to easy on line access to bibliographical resources.
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[254] C Gräßl, T Zinßer, and H Niemann. A probabilistic model-based template matching
approach for robust object tracking in real-time. In Vision, Modeling, and Visualization
2004, pages 81–88, 2004.

[255] P Gravel, G Beaudoin, and JA De Guise. A method for modeling noise in medical images.
IEEE Trans. on Medical Imaging, 23:1221–1232, 2004.
http://dx.doi.org/10.1109/TMI.2004.832656.

[256] H Greenspan, J Goldberger, and L Ridel. A continuous probabilistic framework for image
matching. Computer Vision and Image Understanding, 84:384–406, 2001.
http://dx.doi.org/10.1006/cviu.2001.0946.

[257] U Grenander and MI Miller. Computational anatomy: an emerging discipline. Quarterly
of Applied Mathematics, LVI:617–694, 1998.

[258] WEL Grimson and DP Huttenlocher. On the sensitivity of the Hough transform for
object recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 12:255–
274, 1990.
http://dx.doi.org/10.1109/34.49052.

[259] R Gross, S Baker, I Matthews, and T Kanade. Face recognition across pose and illumi-
nation. In Stan Z. Li and Anil K. Jain, editors, Handbook of Face Recognition. Springer-
Verlag, 2004.

[260] R Gross, I Matthews, and S Baker. Appearance-based face recognition and light-fields.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 26:449–465, 2004.
http://dx.doi.org/10.1109/TPAMI.2004.1265861.

198



[261] R Gross, I Matthews, and S Baker. Appearance-based face recognition and light fields.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 26:449–465, 2004.
http://dx.doi.org/10.1109/TPAMI.2004.1265861.

[262] P Grother, R Micheals, and PJ Phillips. Face Recognition Vendor Test 2002 Performance
Metrics. In Proc. of the 4th International Conference on Audio-and Video-Based Biometric
Person Authentication, volume 2688 of Lecture Notes in Computer Science, pages 937–
945. Springer, 2003.
http://dx.doi.org/10.1007/3-540-44887-X.

[263] H Gu and Q Ji. An automated face reader for fatigue detection. In Proc. of the 6th
International Conference on Automatic Face and Gesture Recognition (FG’04), pages
111–116, 2004.
http://dx.doi.org/10.1109/AFGR.2004.1301517.

[264] L Gu, SZ Li, and H-J Zhang. Learning probabilistic distribution model for multi-view face
detection. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’01), volume 2, pages 116–122, 2001.
http://dx.doi.org/10.1109/CVPR.2001.990934.

[265] B Guo, KM Lam, KH Lin, and WC Siu. Human face recognition based on spatially
weighted Hausdorff distance. Pattern Recognition Letters, 24:499–507, 2003.
http://dx.doi.org/10.1016/S0167-8655(02)00272-6.

[266] G Guo, SZ Li, and K Chan. Face recognition by support vector machines. In Proc. of the
4th International Conference on Automatic Face and Gesture Recognition (FG’00), pages
196–201, 2000.
http://dx.doi.org/10.1109/AFGR.2000.840634.

[267] M Gyulassy and M Harlander. Elastic tracking and neural network algorithms for complex
pattern recognition. Computer Physics Communications, 66:31–46, 1991.
http://dx.doi.org/10.1016/0010-4655(91)90005-6.

[268] M Hagedoorn and R Veltkamp. Metric pattern spaces. Technical Report 1999-03, Utrecht
University, Information and Computing Sciences, 1999.

[269] G Halder, P Callaerts, and WJ Gehring. New perspectives on eye evolution. Current
Opinion in Genetics & Development, 5:602–609, 1995.
http://dx.doi.org/10.1093/jhered/esi027.

[270] PM Hall, D Marshall, and RR Martin. Incremental eigenanalysis for classification. In
Proc. of the British Machine Vision Conference (BMVC’98), pages 286–295, 1998.

[271] FR Hampel. The influence curve and its role in robust estimation. J. of the American
Statistical Association, 69:383–393, 1974.
http://dx.doi.org/10.2307/2285666.

[272] FR Hampel, PJ Rousseeuw, EM Ronchetti, and WA Stahel. Robust statistics: the ap-
proach based on influence functions. J. Wiley & Sons, 1986.

[273] I Han, ID Yun, and SU Lee. Model-based object recognition using the Hausdorff dis-
tance with explicit pairing. In Proc. of the International Conference on Image Processing
(ICIP’99), pages 83–87, 1999.
http://dx.doi.org/10.1109/ICIP.1999.819524.

199



[274] TX Han, V Ramesh, Y Zhut, and TS Huang. On optimizing template matching via
performance characterization. In Proc. of the 10th International Conference on Computer
Vision and Pattern Recognition (ICCV’05), volume 1, pages 182–189, 2005.
http://dx.doi.org/10.1109/ICCV.2005.178.

[275] X Han, C Xu, and JL Prince. A topology preserving level set method for geometric
deformable models. IEEE Trans. on Pattern Analysis and Machine Intelligence, 25:755–
768, 2003.
http://dx.doi.org/10.1109/TPAMI.2003.1201824.

[276] KV Hansen and PA Toft. Fast curve estimation using preconditioned generalized Radon
transform. tip, 5:1651–1661, 1996.
http://dx.doi.org/10.1109/83.544572.

[277] LK Hansen, J Larsen, FA Nielsen, SC Strother, E Rostrup, R Savoy, C Svarer, and
OB Paulson. Generalizable patterns in neuroimaging: How many principal components?
NeuroImage, 9:534–544, 1999.
http://dx.doi.org/10.1006/nimg.1998.0425.

[278] R Haralick, SR Sternberg, and X Zhuang. Image analysis using mathematical morphology.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 9:523–550, 1987.

[279] DM Hawkins and GJ McLachlan. High breakdown linear discriminant analysis. J. of the
American Statistical Association, 92:136–143, 1997.

[280] E Hecht. Optics. Addison-Wesley, 2nd edition, 1987.

[281] B Heisele, P Ho, and T Poggio. Face recognition with support vector machines: global
versus component-based approach. In Proc. of the 8th International Conference on Com-
puter Vision and Pattern Recognition (ICCV’01), volume 2, pages 688–694, 2001.
http://dx.doi.org/10.1109/ICCV.2001.937693.

[282] B Heisele, P Ho, J Wu, and T Poggio. Face recognition: component-based versus global
approaches. Computer Vision and Image Understanding, 91:6–21, 2003.
http://dx.doi.org/10.1016/S1077-3142(03)00073-0.

[283] Y Hel-Or and H Hel-Or. Generalized pattern matching using orbit decomposition. In
Proc. of the International Conference on Image Processing (ICIP’03), volume 3, pages
69–72, 2003. Nayar work re-discovered!
http://dx.doi.org/10.1109/ICIP.2003.1247183.

[284] Y Hel-Or and H Hel-Or. Real-time pattern matching using projection kernels. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 27:1430–1445, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.184.

[285] Y Hel-Or and H Hel-Or. Real-time pattern matching using projection kernels. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 27:1430–1445, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.184.

[286] Y Hel-Or and H Hel-Or. Real-time pattern matching using projection kernels. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 27:1430–1445, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.184.

200



[287] AJ Hii, CE Hann, JG Chase, and EE Van Houten. Fast normalized cross correlation for
motion tracking using basis functions. Computer Methods and Programs in Biomedicine,
82:144–156, 2006.
http://dx.doi.org/10.1016/j.cmpb.2006.02.007.

[288] T Hofman, B Scholkopf, and AJ Smola. Kernel methods in machine learning. Annals of
Statistics, 36:1171–1220, 2008.
http://dx.doi.org/10.1214/009053607000000677.

[289] K Honda, N Sugiura, and H Ichihashi. Robust local principal component analyzer with
fuzzy clustering. In Proc. of the International Joint Conference on Neural Networks,
volume 1, pages 732–737, 2003.

[290] BK Horn. Robot Vision. The MIT Press, 1986.

[291] BKP Horn and BG Schunk. Determining optical flow. Artificial Intelligence, 17:185–203,
1981.
http://dx.doi.org/10.1016/0004-3702(81)90024-2.

[292] K Hornik, M Stinchcombe, and H White. Multilayer feedforward network are universal
approximators. Neural Networks, 2:359–366, 1989.

[293] K Hotta. View-invariant face detection method based on local PCA cells. In Proc. of the
12th International Conference on Image Analysis and Processing, pages 57–62, 2003.
http://dx.doi.org/10.1109/ICIAP.2003.1234025.

[294] PVC Hough. Method and means for recognizing complex patterns. US Patent Nr. 3069654,
1962.

[295] PO Hoyer. Non-negative matrix factorization with sparseness constraints. J. of Machine
Learning Research, 5:1457–1469, 2004.

[296] CW Hsu, CC Chang, and CJ Lin. A practical guide to support vector classification.
Technical report, Dept. of Computer Science, National Taiwan University, 2008.

[297] Y Hu and Z Wang. A similarity measure based on Hausdorff distance for human face
recognition. In Proc. of the 18th IAPR International Conference on Pattern Recognition
(ICPR’06), volume 3, pages 1131–1134, 2006.
http://dx.doi.org/10.1109/ICPR.2006.174.

[298] XS Hua, X Chen, and HJ Zhang. Robust video signature based on ordinal measure. In
Proc. of the International Conference on Image Processing (ICIP’04), volume 1, pages
685–688, 2004.
http://dx.doi.org/10.1109/ICIP.2004.1418847.

[299] C Huang, H Ai, Y Li, and S Lao. High-performance rotation invariant multiview face
detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 29:671–686, 2007.
http://dx.doi.org/10.1109/TPAMI.2007.1011.

[300] H-C Huang, Y-P Hung, and W-L Hwang. Adaptive early jump-out technique for fast
motion estimation in video coding. In Proc. of the 13th IAPR International Conference
on Pattern Recognition (ICPR’96), volume 2, pages 864–868, 1996.
http://dx.doi.org/10.1109/ICPR.1996.547199.

201



[301] K Huang, Y Ma, and R Vidal. Minimum effective dimension for mixtures of subspaces:
A robust GPCA algorithm and its applications. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’04), volume 2, pages 631–638, 2004.
http://dx.doi.org/10.1109/CVPR.2004.155.

[302] PJ Huber. Robust estimation of a location parameter. The Annals of Mathematical
Statistics, 35:73–101, 1964.

[303] PJ Huber. Robust statistics. J. Wiley & Sons, New-York, 1981.

[304] DJ Hunt, LW Nolte, and AR Reibman. Hough transform and signal detection theory
performance for images with additive noise. Computer Vision, Graphics and Image Pro-
cessing, 52:386–401, 1990.
http://dx.doi.org/10.1016/0734-189X(90)90082-7.

[305] DJ Hunt, LW Nolte, and WH Ruedger. Performance of the Hough transform and its
relationship to statistical signal detection theory. Computer Vision, Graphics and Image
Processing, 43:221–238, 1988.
http://dx.doi.org/10.1016/0734-189X(88)90062-X.

[306] DP Huttenlocher and EW Jaquith. Computing visual correspondence: incorporating the
probability of a false match. In Proc. of the 5th International Conference on Computer
Vision and Pattern Recognition (ICCV’95), pages 515–522, 1995.
http://dx.doi.org/10.1109/ICCV.1995.466896.

[307] DP Huttenlocher, GA Klanderman, and WJ Rucklidge. Comparing images using the
Hausdorff distance under translation. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’92), pages 654–656, 1992.
http://dx.doi.org/10.1109/CVPR.1992.223209.

[308] DP Huttenlocher, GA Klanderman, and WJ Rucklidge. Comparing images using the
Hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 15:850–
863, 1993.
http://dx.doi.org/10.1109/34.232073.

[309] DP Huttenlocher and WJ Rucklidge. Multi-resolution technique for comparing images
using the Hausdorff distance. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’93), pages 705–706, 1993.
http://dx.doi.org/10.1109/CVPR.1993.341019.

[310] K Hwang and FA Briggs. Computer Architecture and Parallel Processing. McGraw-Hill,
1984.

[311] HT Hytti. Characterization of digital image noise properties based on RAW data. In
Image Quality and System Performance III, volume 6059 of Proceedings of SPIE, 2005.

[312] A Hyvarinen and E Oja. Independent component analysis: algorithms and applications.
Neural Networks, 13:411–430, 2000.
http://dx.doi.org/10.1016/S0893-6080(00)00026-5.

[313] K Ikeuchi, T Shakunaga, MD Wheeler, and T Yamazaki. Invariant histograms and de-
formable template matching for sar target recognition. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’96), pages 100–105, 1996.
http://dx.doi.org/10.1109/CVPR.1996.517060.

202



[314] J Illingworth and JV Kittler. A survey of the Hough transform. Computer Vision,
Graphics and Image Processing, 44:87–116, 1988.
http://dx.doi.org/10.1016/S0734-189X(88)80033-1.

[315] AK Jain, RPW Duin, and J Mao. Statistical pattern recognition: A review. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 22:4–37, 2000.
http://dx.doi.org/10.1109/34.824819.

[316] AK Jain, P Flynn, and AA Ross, editors. Handbook of Biometrics. Springer, 2007.

[317] AK Jain, K Nandakumar, and A Ross. Score normalization in multimodal biometric
systems. Pattern Recognition, 38:2270–2285, 2005.
http://dx.doi.org/10.1016/j.patcog.2005.01.012.

[318] AK Jain and A Ross. Multibiometric systems. Communications of the ACM, 47:34–40,
2004.
http://dx.doi.org/10.1145/962081.962102.

[319] AK Jain, Y Zhong, and MP Dubuisson-Jolly. Deformable template models: A review.
Signal Processing, 71:109–129, 1998.
http://dx.doi.org/10.1016/S0165-1684(98)00139-X.

[320] AK Jain, Y Zhong, and S Lakshmanan. Object matching using deformable templates.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 18:267–278, 1996.
http://dx.doi.org/10.1109/34.485555.

[321] CV Jawahar and PJ Narayanan. Generalised correlation for multi-feature correspondence.
Pattern Recognition, 35:1303–1313, 2002.
http://dx.doi.org/10.1016/S0031-3203(01)00111-X.

[322] SC Jeng and WH Tsai. Scale- and orientation-invariant generalized Hough transform - a
new approach. Pattern Recognition, 24:1037–1051, 1991.
http://dx.doi.org/10.1016/0031-3203(91)90120-T.

[323] HW Jensen. Realistic Image Synthesis Using Photon Mapping. AK Peters, 2001.

[324] Q Ji and RM Haralick. Error propagation for the Hough transform. Pattern Recognition
Letters, 22:813–823, 2001.
http://dx.doi.org/10.1016/S0167-8655(01)00026-5.

[325] M Jogan, E Zagar, and A Leonardis. Karhunen-Loeve expansion of a set of rotated
templates. IEEE Trans. on Image processing, 12:817–825, 2003.
http://dx.doi.org/10.1109/TIP.2003.813141.

[326] HJ Johnson and GE Christensen. Consistent landmark and intensity-based image regis-
tration. IEEE Trans. on Medical Imaging, 21:450–461, 2002.
http://dx.doi.org/10.1109/TMI.2002.1009381.

[327] S Johnson. The relationship between the matched-filter operator and the target signature
space-orthogonal projection classifier. IEEE Trans. on Geoscience and Remote Sensing,
38:283–286, 2000.
http://dx.doi.org/10.1109/36.823920.

203



[328] K Jonsson, J Matas, J Kittler, and YP Li. Learning support vectors for face verification
and recognition. In Proc. of the 4th International Conference on Automatic Face and
Gesture Recognition (FG’00), pages 208–213, 2000.
http://dx.doi.org/10.1109/AFGR.2000.840636.

[329] F Jurie and M Dhome. Real time 3D template matching. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’01), volume 1, pages 791–796, 2001.
http://dx.doi.org/10.1109/CVPR.2001.990559.

[330] F Jurie and M Dhome. A simple and efficient template matching algorithm. In Proc. of the
8th International Conference on Computer Vision and Pattern Recognition (ICCV’01),
pages 544–549, 2001.
http://dx.doi.org/10.1109/ICCV.2001.937673.

[331] F Jurie and M Dhome. Hyperplane approximation for template matching. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 24:996–1000, 2002.
http://dx.doi.org/10.1109/TPAMI.2002.1017625.

[332] A Just, Y Rodriguez, and M Marcel. Hand posture classification and recognition using
the modified census transform. In Proc. of the 7th International Conference on Automatic
Face and Gesture Recognition (FG’06), pages 351–356, 2006.
http://dx.doi.org/10.1109/FGR.2006.62.

[333] A Kadyrov and M Petrou. The Trace transform and its applications. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 23:811–828, 2001.
http://dx.doi.org/10.1109/34.946986.

[334] A Kadyrov and M Petrou. The invaders algorithm: Range of values modulation for accel-
erated correlation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28:1882–
1886, 2006.
http://dx.doi.org/10.1109/TPAMI.2006.234.

[335] IA Kakadiaris, G Passalis, G Toderici, MN Murtuza, Y Lu, N Karampatziakis, and
T Theoharis. Three-dimensional face recognition in the presence of facial expressions:
An annotated deformable model approach. IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, 29:640–649, 2007.
http://dx.doi.org/10.1109/TPAMI.2007.1017.

[336] P Kalocsai, W Zhao, and E Elagin. Face similarity space as perceived by humans and
artificial systems. In Proc. of the 3rd International Conference on Automatic Face and
Gesture Recognition (FG’98), pages 177–180, 1998.
http://dx.doi.org/10.1109/AFGR.1998.670945.

[337] H Kalviainen, P Hirvonen, L Xu, and E Oja. Probabilistic and non-probabilistic Hough
transforms: overview and comparisons. Image and Vision Computing, 13:239–252, 1995.
http://dx.doi.org/10.1016/0262-8856(95)99713-B.

[338] S Kaneko, I Murase, and S Igarashi. Robust image registration by increment sign corre-
lation. Pattern Recognition, 35:2223–2234, 2002.
http://dx.doi.org/10.1016/S0031-3203(01)00177-7.

[339] S Kaneko, Y Satoh, and S Igarashi. Using selective correlation coefficient for robust image
registration. Pattern Recognition, 36:1165–1173, 2003.
http://dx.doi.org/10.1016/S0031-3203(02)00081-X.

204



[340] T Kaneko and O Hori. Template update criterion for template matching of image se-
quences. In Proc. of the 16th IAPR International Conference on Pattern Recognition
(ICPR’02), volume 2, pages 1–5, 2002.
http://dx.doi.org/10.1109/ICPR.2002.1048221.

[341] T Kaneko and O Hori. Feature selection for reliable tracking using template matching. In
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03),
volume 1, pages 796–802, 2003.
http://dx.doi.org/10.1109/CVPR.2003.1211434.

[342] A Kapoor, YA Qi, and RW Picard. Fully automatic upper facial action recognition.
In Proc. of the IEEE International Workshop on Analysis and Modeling of Faces and
Gestures (AMFG’03), pages 195–202, 2003.
http://dx.doi.org/10.1109/AMFG.2003.1240843.

[343] YB Karasik. A recursive formula for convolutions/correlations and its application in
pattern recognition. Pattern Recognition Letters, 19:53–56, 1998.
http://dx.doi.org/10.1016/S0167-8655(97)00149-9.

[344] J Karhunen and J Joutsensalo. Learning of robust principal component subspace. In Proc.
of the International Joint Conference on Neural Networks, volume 3, pages 2409–2412,
1993.
http://dx.doi.org/10.1109/IJCNN.1993.714211.

[345] S Karungaru, M Fukumi, and N Akamatsu. Face recognition using genetic algorithm
based template matching. In Communications and Information Technology, 2004. ISCIT
2004. IEEE International Symposium on, volume 2, pages 1252–1257, 2004.
http://dx.doi.org/10.1109/ISCIT.2004.1413920.

[346] M Kass, A Witkin, and D Terzopoulos. Snakes: Active contour models. Int. J. of
Computer Vision, 1:321–331, 1988.
http://dx.doi.org/10.1007/BF00133570.

[347] AA Kassim, T Tan, and KH Tan. A comparative study of efficient generalised Hough
transform techniques. Image and Vision Computing, 17:737–748, 1999.
http://dx.doi.org/10.1016/S0262-8856(98)00156-5.

[348] T Kawanishi, T Kurozumi, K Kashino, and S Takagi. A fast template matching algorithm
with adaptive skipping using inner-subtemplates’ distances. In Proc. of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR’04), pages 654–657, 2004.
http://dx.doi.org/10.1109/ICPR.2004.1334614.

[349] Q Ke and T Kanade. Robust L1 norm factorization in the presence of outliers and missing
data by alternative convex programming. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 1, pages 739–746, 2005.
http://dx.doi.org/10.1109/CVPR.2005.309.

[350] Y Keller, A Averbuch, and M Israeli. Pseudopolar-based estimation of large translations,
rotations, and scalings in images. IEEE Trans. on Image processing, 14:12–22, 2005.
http://dx.doi.org/10.1109/TIP.2004.838692.

[351] Y Keller, A Averbuch, and O Miller. Robust phase correlation. In Proc. of the 17th IAPR
International Conference on Pattern Recognition (ICPR’04), volume 2, pages 740–743,

205



2004.
http://dx.doi.org/10.1109/ICPR.2004.1334365.

[352] RA Kerekes and BVKV Kumar. Correlation filters with controlled scale response. IEEE
Trans. on Image processing, 15:1794–1802, 2006.
http://dx.doi.org/10.1109/TIP.2006.873468.

[353] D Keren, M Osadchy, and C Gotsman. Antifaces: A novel, fast method for image detec-
tion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 23:747–761, 2001.
http://dx.doi.org/10.1109/34.935848.

[354] AL Kesidis and N Papamarkos. On the inverse Hough transform. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 21:1329–1343, 1999.
http://dx.doi.org/10.1109/34.817411.

[355] D Keysers, W Macherey, H Ney, and J Dahmen. Adaptation in statistical pattern recog-
nition using tangent vectors. IEEE Trans. on Pattern Analysis and Machine Intelligence,
26:269–274, 2004.
http://dx.doi.org/10.1109/TPAMI.2004.1262198.

[356] M Khosravi and RW Schafer. Low complexity matching criteria for image/video applica-
tions. In Proc. of the International Conference on Image Processing (ICIP’94), volume 3,
pages 776–780, 1994.
http://dx.doi.org/10.1109/ICIP.1994.413783.

[357] M Khosravi and RW Schafer. Template matching based on a grayscale hit-or-miss trans-
form. IEEE Trans. on Image processing, 5:1060–1066, 1996.
http://dx.doi.org/10.1109/83.503921.

[358] J Kim, J Choi, J Yi, and M Turk. Effective representation using ICA for face recognition
robust to local distortion and partial occlusion. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 27:1977–1981, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.242.

[359] J Kim and JA Fessler. Intensity-based image registration using robust correlation coeffi-
cients. IEEE Trans. on Medical Imaging, 23:1430–1444, 2004.
http://dx.doi.org/10.1109/TMI.2004.835313.

[360] J Kim, V Kolmogorov, and R Zabih. Visual correspondence using energy minimization
and mutual information. In Proc. of the 9th International Conference on Computer Vision
and Pattern Recognition (ICCV’03), pages 1033–1040, 2003.
http://dx.doi.org/10.1109/ICCV.2003.1238463.

[361] SH Kim and RH Park. An efficient algorithm for video sequence matching using the
modified Hausdorff distance and the directed divergence. IEEE Trans. on Circuits and
Systems for Video Technology, 12:592–596, 2002.
http://dx.doi.org/10.1109/TCSVT.2002.800512.

[362] SH Kim, HR Tizhoosh, and M Kamel. Choquet integral-based aggregation of image
template matching algorithms. In Proc. of the 22nd International Conference of the North
American Fuzzy Information Processing Society (NAFIPS’03), pages 143–148, 2003.
http://dx.doi.org/10.1109/NAFIPS.2003.1226771.

206



[363] T-K Kim and J Kittler. Locally linear discriminant analysis for multimodally distributed
classes for face recognition with a single model image. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 27:318–327, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.58.

[364] N Kiryati, H Kalviainen, and S Alaoutinen. Randomized or probabilistic Hough transform:
unified performance evaluation. Pattern Recognition Letters, 21:1157–1164, 2000.
http://dx.doi.org/10.1016/S0167-8655(00)00077-5.

[365] J Kittler. Probabilistic relaxation and the Hough transform. Pattern Recognition, 33:705–
714, 2000.
http://dx.doi.org/10.1016/S0031-3203(99)00081-3.

[366] R Kjeldsen and A Aner. Improving face tracking with 2d template warping. In Proc. of
the 4th International Conference on Automatic Face and Gesture Recognition (FG’00),
pages 129–135, 2000.
http://dx.doi.org/10.1109/AFGR.2000.840623.

[367] R Klette and P Zamperoni. Measures of correspondence between binary patterns. Image
and Vision Computing, 5:287–295, 1987.
http://dx.doi.org/10.1016/0262-8856(87)90005-9.

[368] R Knothe, S Romdhani, and T Vetter. Combining PCA and LFA for surface reconstruction
from a sparse set of control points. In Proc. of the 7th International Conference on
Automatic Face and Gesture Recognition (FG’06), pages 637–644, 2006.
http://dx.doi.org/10.1109/FGR.2006.31.

[369] D Knuth. Literate programming. CSLI Lecture Notes 27, Center for the Study of Language
and Information, Stanford, California, 1992.

[370] A Kohandani, O Basir, and M Kamel. A fast algorithm for template matching. In Proc. of
the 3rd International Conference on Image Analysis and Recognition (ICIAR’06), volume
4142 of Lecture Notes in Computer Science, pages 398–409. Springer, 2006.
http://dx.doi.org/10.1007/11867661_36.

[371] R Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model.
In Proc. of the International Joint Conference on Artificial Intelligence, pages 1137–1145,
1995.

[372] A Koloydenko and D Geman. Ordinal coding of image microstructure. In Proc. of the
International Conference on Image Processing, Computer Vision, & Pattern Recognition,
volume 2, pages 613–620, 2006.

[373] SG Kong, J Heo, F Boughorbel, Y Zheng, BR Abidi, A Koschan, M Yi, and MA Abidi.
Multiscale fusion of visible and thermal IR images for illumination-invariant face recogni-
tion. Int. J. of Computer Vision, 71:215–233, 2007.
http://dx.doi.org/10.1007/s11263-006-6655-0.

[374] Y Koren and L Carmel. Robust linear dimensionality reduction. IEEE Trans. on Visual-
ization and Computer Graphics, 10:459–470, 2004.
http://dx.doi.org/10.1109/TVCG.2004.17.

207



[375] I Kotsia and I Pitas. Facial expression recognition in image sequences using geometric
deformation features and support vector machines. IEEE Trans. on Image processing,
16:172–187, 2007.
http://dx.doi.org/10.1109/TIP.2006.884954.

[376] D Kottke and PD Fiore. Systolic array for acceleration of template based ATR. In Proc.
of the International Conference on Image Processing (ICIP’97), pages 869–872, 1997.
http://dx.doi.org/10.1109/ICIP.1997.648104.

[377] W Krattenthaler, KJ Mayer, and M Zeiller. Point correlation: a reduced-cost tem-
plate matching technique. In Proc. of the International Conference on Image Processing
(ICIP’94), volume 1, pages 208–212, 1994.
http://dx.doi.org/10.1109/ICIP.1994.413305.

[378] D Krishnaswamy and P Banerjeer. Exploiting task and data parallelism in parallel Hough
and Radon transforms. In Proc. of the Internation Conference on Parallel Processing,
pages 441–444, 1997.
http://dx.doi.org/10.1109/ICPP.1997.622678.

[379] V Krouverk. POVMan v1.2. http://www.aetec.ee/fv/vkhomep.nsf/pages/povman2, 2005.
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