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Abstract— In this paper we compare to the standard cor-
relation coefficient three estimators of similarity for visual
patterns which are based on the Ly and I; norms. The em-
phasis of the comparison is on the stability of the resulting
estimates. Bias, efficiency, normality and robustness are in-
vestigated through Monte Carlo simulations in a statistical
task, the estimation of the correlation parameter of a binor-
mal distribution. The four estimators are then compared on
two pattern recognition tasks: people identification through
face recognition and book identification from the cover im-
age. The similarity measures based on the I.; norm prove
to be less sensitive to noise and provide better performance
than those based on L; norm*.

Keywords: template matching, robust statistics, correla-
tion, face recognition, book recognition.

1. INTRODUCTION

The estimation of similarity of patterns is a common low-level
vision task which must be routinely performed by many com-
puter vision systems. The Pearson r correlation coefficient is
commonly used to compare visual patterns represented as arrays
of numbers describing image lightness or related quantities(2).
It is known that the estimation of similarity with the r coef-
ficient is very sensitive to noise, which is not surprising as it
is based on the Lz norm. This paper investigates three alter-
native correlation estimators, two based on similarity measures
derived from the L; norm and one on a modified r, which prove
to be less sensitive to noise. Fundamental concepts of robust-
ness and related heuristic tools from the literature are used to
characterize the statistical properties of the estimators through
Monte Carlo simulations. The estimators are compared exper-
imentally in two real world vision tasks: face recognition and
book identification.

The first section of the paper presents the similarity measures
based on the I; norm. A class of robust estimators of position
and scale due to Hampel(3) is then used to derive a robust es-
timator of correlation from the Pearson r. The bias, efficiency,
normality and robustness of the estimators are then investigated
using heuristic tools and Monte Carlo simulations. Finally, the
tasks of face recognition and book identification through tem-
plate matching are addressed using the described estimators of
similarity.

2. SIMILARITY AND CORRELATION

The quantification of the similarity of two images is a ba-
sic operation for many computer vision algorithms. As visual
patterns are usually represented by means of vectors or arrays
of numbers, a common choice is to estimate their similarity

*This research was done within MAIA| the integrated Artificial Intelli-
gence project under development at IRST(L)

through the computation of the Euclidean distance:
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where x = {z1,...,z,} and y = {91, ..., yn} represent the pat-
terns to be compared. However, images of the same object can
be markedly different according to d2 as a consequence of differ-
ent ambient illumination or different characteristics of the digi-
tizing device (such as automatic gain and automatic black level
adjustment). These differences usually represent a nuisance for
many algorithms. To reduce these effects, vectors x and y can
be normalized in order to have zero average u and unit variance
0. The distance between the two normalized vectors x’ and y’
can be expressed by:

d3(x",y") = 2n(1 — pay) (2)
where psy is the correlation coefficient of the original data. The
value of ps, represents a similarity measure directly related to
the Euclidean distance of the normalized vectors and is com-
monly used to find out how well a template subimage matches
a window of a given image. A major drawback of psy is its
sensitivity to even a single grossly erroneous value in the input
data:
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This behaviour is related to the properties of the Euclidean
distance. The normalization of data is similarly affected by
large errors as it is based on the arithmetic mean and on the
standard deviation. Alternative robust estimators are known in
the literature and will be referred to in the following sections.
Let us note that the use of a robust normalization procedure
does not remove the sensitivity of p;, to outlying data.

Such erroneous data frequently occur when working with real
world images and may be due to transmission noise, speculari-
ties, salt and pepper noise, just to cite a few common sources.
To cope with the high sensitivity to noise exhibited by p., other
similarity measures can be derived from distances other than
the Euclidean. An alternative distance, which exhibits a lower
sensitivity to noise is the L; norm defined by:

)=Z|zi—yi| (5)

Two similarity measures based on the I; norm can be intro-

duced:
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which satisfy the following relations:
g(xla y,)a l(xl’ y’) € [0’ 1]
g(x',y") =1, 1(x",¥y) =1
g(xlayl) =0, l(xla y,) =0
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where x’ and y’ are normalized vectors. The next section in-
troduces a robustified r coefficient. The statistical properties
of the estimators are then compared both statistically, in the
computation of the correlation parameter of a bivariate normal
distribution, and experimentally in two real world vision tasks
(face recognition and book identification).

3. ROBUSTNESS MEASURES OF ESTIMATORS

Whenever a statistical model is applied to real data, low
sensitivity of the estimators to slight deviations from the as-
sumed model is highly desirable. Many estimators used rou-
tinely, such as the arithmetic mean and the sample standard
deviation, are very sensitive to deviations from the models for
which they are optimal. The analysis of estimators which are
robust to deviations from the idealized model is the subject of
robust statistics( ® 2). Our analysis will make use of the notion
of sensitivity curve(6) of an estimator 7' based on a finite sample
of size n:

SC(z) = n [T ((1 - %) Fucr + %Am) - T(Fn_l)] 8)

where F,_; is the empirical distribution of (z1,...,%n_1).
In many situations, SCy(z) will converge to the influence
function(3) of the estimator when n — oo. The sensitivity curve
is mainly a heuristic tool, with an important intuitive interpre-
tation: it describes the effect of a small contamination at the
point z on the estimate, standardized by the mass of the con-
tamination.

Several robustness measures can be derived from the sensitivity
curve of an estimator:

o the gross-error sensitivity v* which measures the worst ap-
proximate influence which a small amount of contamina-
tion of fixed size can have on the value of the estimator;

o the local-shift sensitivity \* which measures the effect of
shifting an observation slightly from point z to a neighbor-
ing point y;

o the rejection point p* which, when finite, represents the
point at which observations are completely rejected.
Another important indicator is the change-of-variance function
which reflects the sensitivity of the asymptotic variance of the
estimator to contamination of the underlying distribution. The
related sensitivity parameter is usually named x*. The above
robustness measures are essentially local; a major global robust-
ness measure must be introduced, the breakdown point, which
describes up to what distance from the model distribution F' the
estimator still gives some relevant information. A finite sample

definition of the breakdown point is the following (3):
Definition 1: The finite sample breakdown point ¢* of the
estimator 7}, at the sample z1,...,z, is given by:
& (Th;x) = %max{k; max sup Tn(z) < Qu,
Ptk Yy, Yk

min  inf T,(z) > Qn} (9)
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where Qar, 2 represent boundary values of the parameter to
be estimated and the sample z = (z1,..., z,) is obtained by
replacing the k data points (z;,, ...,z ) by the arbitrary values
(y1,---, yx)-

Examples of {Qm, 2} are {—o00, 00} for location estimators,
{0, 00} for scale estimators. An estimator is said to be robustif
it has a strictly positive breakdown point.

A popular class of robust estimators is given by the M-
estimators introduced by Huber (7) generalizing the concept of
maximum likelihood estimator. An important example in the
class is given by the tanh-estimators for scale and location due
to Hampel(®). These operators belong to a particular subset
of M-estimators, characterized by the ability to reject extreme
outliers completely: their ¥ function vanishes outside some cen-
tral region. The tanh-estimators have the following important
characteristics:

o a finite rejection point p* =r

¢ a maximal breakdown point €* = 0.5

o a low gross-error sensitivity v*

o a finite local-shift sensitivity A*

o a finite change-of-variance senmsitivity x* = k; they also

have the highest efficiency subject to the imposed bound
x* among M-estimators whose ¥-function vanishes outside
some central region.
The tanh-estimator for scale can be used to construct a robust
version of the Pearson correlation estimator r. In fact, for stan-
dardized random variables the following formula holds:

_ 02(X+Y) —GQ(X—Y)
P (X +Y)+o2(X —Y)

(10)

where o represents the standard deviation. A robust corre-
lation estimator R can thus be obtained by substituting to the
standard deviation a robust scale estimator (5) such as the tanh-
estimator for a scale parameter:

R= Tn(X +Y) — o (X —Y)
B o (X +Y)+07, (X -Y)

(11)

4. STATISTICAL PROPERTIES OF THE ESTIMATORS

A meaningful comparison of the similarity measures intro-
duced so far requires that they estimate the same parameter.
We choose to estimate the correlation parameter p of a binormal
distribution b(z, y; 0,1, p) with zero averages and unit variances:
(2% —2p2y+y°)

1
e 2(1-p2)

b(z,y;0,1,p) = -

(12)
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A commonly used estimator of p is the Pearson coefficient pgy.
As the average and variance of the marginal distribution of X
and of Y are known, they need not be estimated from the data
and the Pearson coefficient reduces to r:

2 iy

1/2 1/2
the denominator being necessary to ensure that r € [—1,1].
The similarity measures g and [, defined in Egs. 6 and 7, can be

transformed into estimators of p. In fact, the similarity measure
¢ is an estimator of

_ ==yl _
Eo=E (1 E(|x|_+|y|)) = 9s(0)

while [ is an estimator of

|z — vl
E=p(1- 229 _
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(13)

T(X’ y) =

(14)

(15)
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Fig. 1 Plots of ¢4(p) and of ¢;(p) for the bivariate normal
distribution 6(0, 1, p)

where E(-) has the usual meaning of expected value. The map-
pings ¢4 and ¢; can be inverted and p can be computed from

E, and Ey:
p=9¢5"(Eg) (16)

p=o¢;" (E) (17)

When the size of the sample is sufficiently large, g and ! are
good approximations of the expected values Fg4, E; and can be
used as estimators of p:

ra = ¢;"'(9) (18)

rz= o (1) (19)
The mappings ¢4 and ¢; can be computed numerically under
the binormal assumption and are reported in Figure 1.

The estimation of the correlation coefficient of variables dis-
tributed according to a bivariate normal distribution falls within
the general field of statistical estimation, itself one of the most
important methods of statistical inference. Its purpose is to
estimate the values of parameters involved in a distribution of
a statistical population by using observations on the popula-
tion. Bias, efficiency, distribution and robustness are important
characteristics on which we choose to compare the estimators
of correlation R, r, rq, rr defined in Egs. 11, 13, 18 and 19 re-
spectively. The characterization of these estimators makes use
of Monte Carlo simulations. In all of the experiments a one-

step version of the tanh scale estimator was used with r = 4
and k = 6.0.

4.1 Bias, efficiency and normality

The lower bound given by the Rao-Cramer inequality(8) for
the estimation of the correlation of a bivariate normal distribu-
tion is:

nlos? — pt—1+2%(143p%) — 6pazy
v (1-p21)°

(v°(1+30°) — 2p°zy) db(z,¥;0,1,p) (20)

While the estimators of correlation r, R, rg,rr are consistent
(i.e asymptotically unbiased) they are all biased and thus the
Rao-Cramer inequality does not provide a lower bound for their
variance. A popular technique to reduce the bias of an estimator
and to estimate its variance is the jackknife one, originally pro-
posed by Quenouille (?). Let us assume that an estimator ¢(6)
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Fig. 2 The biased estimates of the correlation coefficient for
(0,1, p = 0.5) are reported as a function of the sample size n
together with the available jackknifed estimates

based on a sample of size n has a bias which can be expanded

as: a
> (21)

E(¢®)-0) =) %

k=1
and that if the i-th observation is neglected the estimate ¢;(§)
based on a sample of size n — 1 has the following bias expansion:

(22)

E@(0)=8) =3 o2

k=1

A new estimator q:; can be introduced:

3(6) = no(0) = == 3 6i(0)

(23)

whose bias has no first order term. The so called jackknife
pseudo-values:

9i(6) = noé(0) — (n —1)6:(8)

can be used to estimate the variance of the estimator ¢:

o*(¢) = E[(¢: = 9)’] (25)
The jackknife technique is not always applicable and some gen-
eral conditions are given by Rey(19). Of the four p estimators
being compared only R cannot be jackknifed successfully. The
biased estimates of the correlation coefficient for 5(0,1, p = 0.5)
are reported as a function of the sample size in Figure 2 together
with the available jackknifed estimates.

The Rao-Cramer lower bound and the standard deviation of
the estimators (jackknifed when possible) are reported in Figure
3 for different values of the parameter p.

The knowledge of the distribution of the estimator is of fun-
damental importance whenever the significance of differences in
the estimated values must be quantified. It is known that the
distribution of the Fisher’s z-transformed Pearson r:

1 (l—l—'r)
z=—ln
2 1—7r

(24)

(26)

is approximately normal when the size of the sample is mod-
erately large (> 10). The normality of the distribution
of the alternative estimators has been investigated using the
Kolmogorov-Smirnov test (11). The significance at which the
resulting Fisher z-transformed distributions are normal is re-
ported as a function of the size of the sample in Figure 4.
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Fig. 4 The normality of the estimators vs. the size of the sample
as established by the Kolmogorov-Smirnov test on 1000 samples
of the estimator distribution at p = 0.5

4.2 Robustness

The robustness of the correlation estimators so far considered
can be measured by their finite-sample breakdown point defined
in Eq. 9. In the estimation of correlation it is appropriate to

assume () — (—11) )

as the set of boundary values in the definition of breakdown
point. The breakdown points €¢* of the different estimators for
a sample of size n are:

e =0 (28)
¢k = n/(2n) (29)
€y = 0 (30)
&, = (n=1)/n (31)

so that the only robust estimators are R and rz. Inspection
of the finite sample sensitivity curves SC, of the estimators,
reported in Figure 5, allow us to compare the stability of the
estimators: the SC of rg reflects a superior stability of the es-
timate to small contamination of the underlying distribution as

Sensitivity curve of r Sensitivity curve of R
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Fig. 5 Sensitivity curves of the r, R, rg and rz estimators at
bxy(0,1,p = 0.9)
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Fig. 6 Sensitivity to the contamination of the bivariate normal
(p = 0.9) with uncorrelated binormal distribution (left) and
with an uncorrelated bivariate distribution which is normal on
X and uniform on Y (right)

compared to that of r (though both SC are unbounded). Both
R and rz have bounded sensitivity curves with approximately
the same range.

The sensitivity of the estimators to two different contamina-
tions was also investigated through Monte Carlo simulations.
The first type of contamination considered was:

F'=(1—-tbx,v(0,1,p) +tnx(0,1) ny(0,1) (32)

where the bivariate normal distribution of correlation p is con-
taminated with an uncorrelated bivariate normal distribution; ¢
represents the amount of contamination. The second distribu-
tion used in the numerical experiments was:

F"=(1—t)bx,v(0,1,p) +t nx(0,1) Uy(—3,3) (33)
where Uy (—3, 3) represents the uniform distribution in the in-
terval [—3,3]. The sensitivity of the estimators is reported in
Figure 6.

The sensitivity of the variance of the estimators under un-
correlated normal contamination is reported in Figure 7. The
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Fig. 7 The efficiency of the estimators as represented by the
standard deviation of their distribution under contamination of
the bivariate normal with p = 0.9

Pearson r coefficient exhibits the highest efficiency at the un-
contaminated bivariate normal distribution, but even a small
contamination makes r the less efficient among the compared
estimators.

Note that in all of the Monte Carlo simulations the location
and scale of the bivariate normal distribution where not esti-
mated from the sample but were assumed to be known. Should
they be estimated, the use of robust estimators (e.g. using the
Hampel tanh-estimators) is recommended.

5. APPLICATIONS

Many visual tasks rely for their successful outcome on the
robust estimation of similarity of visual patterns. As an ex-
perimental platform for testing computer vision algorithms, we
developed an electronic librarian whose main goals include up-
dating the electronic catalogue of a library and managing book
loans and returns.

In this section we describe the results of the application of the
similarity estimators within the two subsystems of the electronic
librarian: the person identifier and the book recognizer.

5.1 Face recognition

The problem of people identification through face recognition
is addressed as a template matching task: the measures of sim-
ilarity discussed in the previous sections, and the related corre-
lation estimators, provide the matching scores. In the following
we will consider images, represented as matrices of numbers,
each number representing lightness or a related quantity. The
correlation estimators, now to be interpreted as similarity es-
timators, will be compared in the task of person identification
(12,13) Digitized images of faces, taken from a frontal view, will
be used. The sensitivity of the estimators to three typical kinds
of noise which can be expected in digitized images (see Figure
8) is reported in Figures 9,10.

Note that R proves to be the less sensitive estimator while r
turns out to be the most sensitive among the compared mea-
sures. The estimators were then used to recognize a person by
comparing a digitized picture of his/her face against a set of
faces stored in a reference database. All of the pictures were
geometrically normalized so that the eyes were in the same lo-
cation (14), A single set of facial regions, encompassing the eyes,
nose and mouth respectively, was used for the comparison (see

Fig. 8 A face image (left) corrupted with additive gaussian,
multiplicative gaussian and salt-pepper noise (20% contamina-

tion)

Estimator | Recognition (%) R
r 81 1.19
R 81 1.22
rg 88 1.12
TL 87 1.18
g 87 1.29
[ 87 1.32

TABLE I Performance and separation ratio for the different
estimators of similarity. The separation ratio R,,as is defined
as the similarity of the face to be recognized with the database
entry of the corresponding user divided by the highest similarity
among the remaining entries.

Figure 11).

The corresponding areas of the digitized picture of the un-
known face were compared, allowing for limited shifts, to the
corresponding areas extracted from the pictures in the database.
For each area a correlation measure was computed, thereby ob-
taining three sets of scores. The similarity of the unknown face
to each single face in the database was then computed by us-
ing a weighted geometrical average of the three available scores.
The resulting performances are reported in Table I.

The r and R coefficient have the same performances, which
are lower than those of the ro¢ and rz coefficients. The low
performance of R, in spite of its robustness, is due to its finite
rejection point which, in the task at hand, throws away dis-
criminating information. The high sensitivity of r to even small
contaminations of the templates, such as due to a defective ge-
ometric normalization of the pictures, is the main reason for its
reduced performance. The L; related estimators rg and rz per-
form nearly equally well, clearly outperforming r and R. The
recognition performance is supplemented by the average value
of the ratio Rmas, defined as the similarity of the face to be
recognized with the database entry of the corresponding user
divided by the highest similarity among the remaining entries.
The coefficients g and ! could also be used to compare the pat-
terns and their performances are reported in Table I. While the
recognition performance is essentially unchanged, the value of
the R,,a ratio is much more favourable and was found to be
beneficial when introducing the possibility of rejecting an un-
known face because of its lack of similarity with the people in
the database. The four estimators have the following computa-
tional cost normalized to that of r:

L, = 1.0
Ly ~ 14



Estimator | Recognition (%) R
r 86 2.33
g 92 1.50
[ 91 1.23

TABLE II Performance of three different similarity indices in
a book recognition task. The test set and the database contain
respectively 123 and 1003 book

L., ~ 16
Lr ~ 15

The characteristics of robustness, computational efficiency and
performance suggest the use of rz in this particular task.

5.2 Book recognition

The book recognition system aims at recognizing a book by
using the image of its cover. The approach adopted in the elec-
tronic librarian system is based on the selection of a set of global
features in order to characterize each book and to distinguish it
with respect to a set of candidates(15),

The image of the book is acquired by a module which detects
an object entering the field of view of the camera and waits
till a stable image is available. The book is then automatically
localized and geometrically normalized so that its cover fills a
square of predefined size.

The error in the localization of the book vertices ranges from
0 to 20 pixels in a normalized 256x256 image. Besides the local-
ization inaccuracy, the recognition task is complicated by the
presence of the user’s finger on the book image.

The matching procedure loops on the features list which in-
cludes the grey level histogram of the image, the projections of
the edges, the location of its most significant peaks and the cover
image itself. The comparison stops as soon as a feature allows
the classifiers to recognize the unknown book with a predefined
confidence level. Further, each feature reduces the number of
book candidates inside the data base used for matching the in-
put book.

One of the selected features is the correlation between the
cover image of the unknown book and a set of reference images
stored in the database.

Figure 12 shows the result of the book acquisition and local-
ization phases, while Figure 13 reports the corresponding nor-
malized database image.

In the presented experiment, 123 book images were acquired
and matched against the 1003 database images by using three
different similarity indices: r, g and I. The classification perfor-
mances are compared in Table II.

6. CONCLUSIONS

The standard Pearson r coefficient was compared to more sta-
ble and/or robust estimators. The high sensitivity of r to even
small contamination makes it non suitable to the estimation of
similarity of patterns in real world applications. Alternative
estimators, based on the L, and L; norms, were investigated
and compared both statistically, in the estimation of the corre-
lation parameter of a bivariate binormal distribution, and ex-
perimentally on face recognition and book identification. The
similarity measures based on the L; norm provide estimators of
the correlation parameter of a binormal distribution which are
more stable and/or robust of the standard Pearson r coefficient,
while retaining a comparable efficiency and computational cost.

In the considered real world tasks, the estimators based on the
L1 norm provide reliable scores, outperforming the estimators
based on the Lo norm.
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Fig. 9 Sensitivity to additive gaussian noise (left) and to multi-
plicative gaussian noise such as due to non uniform response of
CCD elements in the video camera acquiring the image (right)

Fig. 10 Sensitivity to salt and pepper noise, which may be due
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Fig. 11 The highlighted regions represent the templates
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Fig. 12 The image of the book presented to the camera. The
vertices of the book are automatically located and are repre-
sented in the picture by white squares

A Hurman-Foactors Approach

Fig. 13 The reference image stored in the book data base



