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Abstract—Over the last twenty years several different tech-
niques have been proposed for computer recognition of hu-
man faces. The purpose of this paper is to compare two
simple but general strategies on a common database (frontal
images of faces of 47 people, 26 males and 21 females, four
images per person). We have developed and implemented
two new algorithms, the first one based on the computa-
tion of a set of geometrical features, such as nose width
and length, mouth position and chin shape, and the second
one based on almost-grey-level template matching. The re-
sults obtained on the testing sets, about 90% correct recogni-
tion using geometrical features and perfect recognition using
template matching, favour our implementation of the tem-
plate matching approach.

One of the most remarkable abilities of human vision is that
of face recognition. It develops over several years of childhood,
is important for several aspects of our social life and, together
with related abilities, such as estimating the expression of people
we interact with, has played an important role in the course of
evolution.

The problem of face recognition was considered in the early
stages of computer vision and is now undergoing a revival, after
nearly twenty years. Different specific techniques were proposed
or reproposed recently. Among those, one may cite neural nets
([12]), elastic template matching ([8], [36]), Karhunen-Loeve ex-
pansion ([33]), algebraic moments ([17]) and isodensity lines
([22]). Typically, the relation of these techniques with standard
approaches and their relative performance has not been charac-
terized well or at all. Even absolute performance has been rarely
measured with statistical significance on meaningful databases.

This paper focuses on two traditional classes of techniques
applied to the recognition of digital images of frontal views of
faces under roughly constant illumination. The first technique
is based on the computation of a set of geometrical features
from the picture of a face. This was the first approach towards
an automated recognition of faces (for the pioneering work of
Kanade, see [18]). The second class of techniques is based on
template matching. We attempt here a comparative analysis of
these two different approaches to face recognition.

Psychological studies of human face recognition suggest that
virtually every type of available information is used ([35]).
Broadly speaking we can distinguish two ways (see [29]) to get
a one-to-one correspondence between the stimulus (face to be
recognized) and the stored representation (face in the database):

Geometric, feature-based matching. A face can be recognized

even when the details of the individual features (such as
eyes, nose and mouth) are no longer resolved. The re-
maining information is, in a sense, purely geometrical and
represents what is left at a very coarse resolution. The idea
is to extract relative position and other parameters of dis-
tinctive features such as eyes, mouth, nose and chin. Gold-
stein ([15]) and Kaya ([19]) (see also [11], [3]) showed that
a computer program provided with face features extracted
manually could perform recognition with apparently satis-

factory performance. A recent investigation can be found
in [13], [2].

Template matching. In the simplest version of template

matching, the image, represented as a bidimensional ar-
ray of intensity values, is compared using a suitable metric
(typically the euclidean distance) with a single template,
representing the whole face. There are of course several,
more sophisticated ways of performing template matching.
For instance, the array of grey levels may be suitably pre-
processed before matching (see also [2]). Several full tem-
plates per each face may be used to account for the recog-
nition from different viewpoints. Still another important
variation is to use, even for a single viewpoint, multiple
templates. A face is stored then as a set of distinct(ive)
smaller templates [1].
A rather different, and more complex, approach is to use
a single template together with a qualitative, prior model
of how a generic face transforms under a change of view-
point. The deformation model is then heuristically built
into the metric used by the matching measure: this is the
idea underlying the technique of elastic templates (see [9],
18], [36]).

In order to investigate the two approaches described above we
have developed two new algorithms and tested them on the same
data bases. The experiments described here begin to answer
questions such as:

¢ How discriminating are the single features?

¢ How does recognition performance depend on resolution?

o Islow-pass information less or more effective than high-pass
information?

e How do the two different strategies compare with each
other?

While we do not claim that our findings are relevant to how

human recognition proceeds, they could well provide some hint
as to how it could.

1. EXPERIMENTAL SETUP

The database we used for the comparison of the different
strategies is composed of 188 images, four for each of 47 people.
Of the four pictures available, the first two were taken in the
same session (a time interval of a few minutes) while the other
pictures were taken at intervals of some weeks (2 to 4). The
pictures were acquired with a CCD camera at a resolution of
512 x 512 pixels as frontal views. The subjects were asked to
look into the camera but no particular efforts were made to en-
sure perfectly frontal images !. The illumination was partially
controlled: the same powerful light was used but the environ-
ment where the pictures were acquired was exposed to sun light
through windows. The pictures were taken randomly during
the day time. The distance of the subject from the camera was

1 Visual inspection of the database revealed no significant deviation from
a frontal view but no quantitative analysis was done



fixed only approximately, so that scale variations of as much as
30 percent were possible.

In all of the recognition experiments the learning set had an
empty intersection with the testing set.

2. (}EOMETRIC7 FEATURE-BASED MATCHING

As we have mentioned already, the very fact that face recogni-
tion is possible even at coarse resolution, when the single facial
features are hardly resolved in detail, implies that the overall
geometrical configuration of the face features is sufficient for
discrimination. The overall configuration can be described by
a vector of numerical data representing the position and size of
the main facial features: eyes and eyebrows, nose and mouth.
This information can be supplemented by the shape of the face
outline. As put forward by Kaya and Kobayashi (see [19]) the
set of features should satisfy the following requisites:

¢ estimation must be as easy as possible;

o dependency on light conditions must be as small as possi-

ble;

o dependency on small changes of face expression must be

small;

o information content must be as high as possible.

The first three requirements are satisfied by the set of features
we have adopted, while their information content is character-
ized by the experiments described later.

One of the first attempts at automatic recognition of faces by
using a vector of geometrical features was due to Kanade (see
[18]) in 1973. Using a robust feature detector (built from simple
modules used within a backtracking strategy) a set of 16 features
was computed. Analysis of the inter and intra class variances
revealed some of the parameters to be ineffective, yielding a vec-
tor of reduced dimensionality (13). Kanade’s system achieved
a peak performance of 0.75 correct identification on a database
of 20 different people using two images per person, one for ref-
erence and one for testing.

The computer procedures we implemented are loosely based
on Kanade’s work and will be detailed in the next section. The
database used is however more meaningful (in the sense of being
larger) both in the number of classes (47 different people) to be
recognized, and in the number of instances of the same person
to be recognized (4).

2.1 Normalization

One of the most critical issues in using a vector of geometri-
cal features is that of proper scale normalization. The extracted
features must be somehow normalized in order to be indepen-
dent of position, scale and rotation of the face in the image
plane. Translation dependency can be eliminated once the ori-
gin of coordinates is set to a point which can be detected with
good accuracy in each image. The approach we have followed
achieves scale and rotation invariance by setting the interocu-
lar distance and the direction of the eye-to-eye axis. We will
describe the steps of the normalization procedure in some de-
tail since they are themselves of some interest (an alternative
more recent strategy which is even faster and has comparable
performance can be found in [32]).

The first step in our technique resembles that of Baron ([1])
and is based on template matching by means of a normalized
cross-correlation coefficient, defined by :

Cxly) = < ItT i(;T§U€;)>< T> (1)

where I7 is the patch of image I which must be matched to
T, <> the average operator, I7T represents the pixel-by-pixel

product, and o the standard deviation over the area being
matched. This normalization rescales the template and image
energy distribution so that their average and variances match.

The eyes of one of the authors (without eyebrows) were used
as a template to locate eyes on the image to be normalized. To
cope with scale variations, a set of 5 eye templates was used,
obtained by scaling the original one (the set of scales used is 0.7,
0.85, 1, 1.15, 1.3 to account for the expected scale variation).
Eye position was then determined looking for the maximum ab-
solute value of the normalized correlation values (one for each
of the templates). To make correlation more robust against illu-
mination gradients, each image was prenormalized by dividing
each pixel by the average intensity over a suitably large neigh-
borhood.

It is well known that correlation is computationally expen-
sive. Additionally, eyes of different people can be markedly
different.

These difficulties® can be significantly reduced by using hi-
erarchical correlation (as proposed by Burt in [10]). Gaussian
pyramids of the prenormalized image and templates are built.
Correlation is performed starting from the lowest resolution
level, progressively reducing the area of computation from level
to level by keeping only a progressively smaller area. Let o be in
(0,1) and 1 =1,...,n be the pyramid level, with L; the lowest
resolution level. Let U;(L;) be the operator that produces an
image with the resolution of level i from an image at level j (by
pixel replication if + > y and by matched low-pass filtering and
subsampling if i < j). At each level (starting from level 2) cor-
relation is computed at pixel x only if the following requirement
is satisfied:

Uit1(Cni(x)) > © = mgx(@ | 1—0:(0) > a) (3)

where o(8) is the cumulative (frequency) distribution of the
(computed) correlation values at level 1 and « is the fraction
of active pixels (i.e. the sites where correlation was computed)
which will be projected at the upper level.

Once the eyes have been detected, scale is pre-adjusted using
the ratio of the scale of the best responding template to the ref-
erence template. The position of the left and right eye is then
refined using the same technique (with a left and a right eye
template). The resulting normalization proved to be good. The
procedure is also able to absorb a limited rotation in the image
plane (up to 15 degrees). Once the eyes have been indepen-
dently located, rotation can be fixed by imposing the direction
of the eye-to-eye axis, which we assumed to be horizontal in the
natural reference frame.

2.2 Feature Extraction

Face recognition, while difficult, presents a set of interest-
ing constraints which can be exploited in the recovery of facial
features. The first important constraint is bilateral symmetry.

?Influence of eye shape can be further reduced by introducing a modified
correlation coefficient. Let 7(X) be a (small) neighborhood of point X
in image I and FQI(X)(U)) the intensity value in £2;(X) whose absolute
difference from w is minimum: if two values qualify, their average (w) is
returned. The new cross correlation is considered:

C'(¥) =Y Fa(xey)(TO0) T(X) (2)
X

whose normalized form is similar to Eq. 1. The newly introduced coeffi-
cient introduces the possibility of local deformation in the computation
of similarity. The interplay of the two techniques (hierarchical correla-
tion and modified correlation coefficient) proved very effective, yielding
no errors on the available database.



Another set of constraints derives from the fact that almost ev-
ery face has two eyes, one nose, one mouth with a very similar
layout. While this may make the task of face classification more
difficult, it can ease the task of feature extraction. The following
paragraphs briefly explore the implication of bilateral symme-
try and expose some ideas on how anthropometric measures can
be used to focus the search of a particular facial feature and to
validate results obtained through simple image processing tech-
niques ([4], [5]).

A very useful technique for the extraction of facial features
is that of integral projections. Let Z(z,y) be our image. The
vertical integral projection of Z(z,y) in the [z1,z2] X [y1, y2]
rectangle is defined as:

Vie)=Y_ I(z,y) (4)

The horizontal integral projection is similarly defined as:

L)

H(y)= > I(z,9) (5)
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This technique was successfully used by Takeo Kanade in his
pioneering work ([18]) on recognition of human faces. Projec-
tions can be extremely effective in determining the position of
features provided the window on which they act is suitably lo-
cated to avoid misleading interferences. In the original work of
Kanade the projection analysis was performed on a binary pic-
ture obtained by applying a laplacian operator (a discretization
of Ozl + (?yyf) on the grey-level picture and by thresholding the
result at a proper level. The use of a laplacian operator, how-
ever, does not provide information on edge (that is gradient)
directions. We have chosen therefore to perform edge projec-
tion analysis by partitioning the edge map in terms of edge
directions. There are two main directions in our constrained
face pictures: horizontal and vertical®.

Horizontal gradients are useful to detect the left and right
boundaries of face and nose, while vertical gradients are useful
to detect the head top, eyes, nose base and mouth.

Once eyes have been located using template matching, the
search for the other features can take advantage of the knowl-
edge of their average layout (an initial estimate, to be updated
when new faces are added to the database, can be derived by
manually locating features on a single face).

2.2.1 Mouth and nose

Mouth and nose are located using similar strategies. The
vertical position is guessed using anthropometric standards. A
first, refined estimate of their real position is obtained looking
for peaks of the horizontal projection of the vertical gradient
for the nose, and for valleys of the horizontal projection of the
intensity for the mouth (the line between the lips is the dark-
est structure in the area, due to its configuration). The peaks
(and valleys) are then rated using their prominence and distance
from the expected location (height and depth are weighted by a
gaussian factor). The ones with the highest rating are taken to
be the vertical position of nose and mouth. Having established
the vertical position, search is limited to smaller windows.

The nose is delimited horizontally searching for peaks (in
the vertical projection of horizontal edge map) whose height

3 A pixel is considered to be in the vertical edge map if the magnitude
of the vertical component of the gradient at that pixel is greater than
the horizontal one. The gradient is computed using a gaussian regular-
ization of the image. Only points where the gradient intensity is above
an automatically selected threshold are considered ([34], [4]).

is above the average value in the searched window. The
nose boundaries are estimated from the leftmost and rightmost
peaks. Mouth height is computed using the same technique but
applied to the vertical gradient component. The use of direc-
tional information is quite effective at this stage, cleaning much
of the noise which would otherwise impair the feature extrac-
tion process. Mouth width is finally computed thresholding the
vertical projection of the horizontal edge map at the average
value (see Fig. 2).

2.2.2 Eyebrows

Eyebrow position and thickness can be found through a sim-
ilar analysis. The search is once again limited to a focused win-
dow, just above the eyes, and the eyebrows are found using the
vertical gradient map. Our eyebrows detector looks for pairs of
peaks of gradient intensity with opposite direction. Pairs from
one eye are compared to those of the other one: the most similar
pair (in term of the distance from the eye center and thickness)
is selected as the correct one. Given this information the up-
per and lower boundary of the left eyebrow are followed and
the set of features shown in Fig. 5 is computed. No hairline
information is considered because it may change considerably
in time.

2.2.3 Face outline

We used a different approach for the detection of the face
outline. Again we have attempted to exploit the natural con-
straints of faces. As the face outline is essentially elliptical,
dynamic programming has been used to follow the outline on
a gradient intensity map of an elliptical projection of the face
image. The reason for using an elliptical coordinate system is
that a typical face outline is approximately represented by a
line. The computation of the cost function to be minimized
(deviation from the assumed shape, an ellipse represented as a
line) is simplified, resulting in a serial dynamic problem which
can be efficiently solved (see [5]).

In summary, the resulting 35 geometrical features that are ex-
tracted automatically in our system and that are used for recog-
nition, are as follows:

o eyebrow thickness and vertical position at the eye center

position;

o a coarse description (11 data) of the left eyebrows arches;

¢ nose vertical position and width;

o mouth vertical position, width (upper and lower lips) and

height;

o eleven radii describing the chin shape;

« bigonial breadth (face width at nose position);

o zygomatic breadth (face width halfway between nose tip

and eyes).

A pictorial presentation of the features is given in Fig. 6.

2.8 Recognition Performance

Detection of the features listed above associates to each face
a thirtyfive-dimensional numerical vector. Recognition is then
performed with a Bayes classifier.

Our main experiment aims to characterize the performance
of the feature-based technique as a function of the number of
classes to be discriminated. Other experiments try to assess
performance when the possibility of rejection is introduced.

We assume that the feature vectors for a single person are dis-
tributed according to a gaussian distribution. Different people
are characterized only by the average value while the distribu-
tion is common. This allows us to estimate the shape of the



distribution, that is the covariance matrix %, by using all the
examples in the learning set

3=
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where Y; 1s estimate of the covariance matrix obtained from
the data of the :-th person. Once the covariance matrix is esti-
mated, the probability of a given measurement can be directly
associated to suitably defined distance:

Aj(x) = (x = my) ST (x —m;) (7)

where m; is the average vector representing the j-th person. An
unknown vector is then associated to the nearest netghborin the
databse, i.e. to the person which maximizes the probability of
the measurement vector®. The effectiveness of the features in
describing the available data has been investigated using the
Karhunen-Loeve expansion (or principal component analysis,
[14]). The feature vectors are expressed as a linear combination
of the eigenvectors of the covariance matrix, sorted by decreas-
ing eigenvalue: the first components in the new expression of
the vectors are the most effective in capturing the variance of
the data. The fraction of the total variance captured by the first
n eigenvectors is reported in Fig. 7. The performance which can
be achieved using the first n principal components is reported
in Fig. 8.

A useful data on the robustness of the classification is given
by an estimate of the intra class variability as opposed to the
inter class variability. This can be done using the so called
Min/Max ratio (hereafter Ry,ar)(see [25], [26]) which is defined
as the minimum distance to a wrong correspondence over the
maximum distance to the correct correspondence. In our ex-
periments each class was represented by a single element, the
arithmetic average of the available examples, so that the max-
imum distance reduces to the distance from the representing
vector. Should the Min/Max ratio be greater than 1 for ev-
ery class, perfect discrimination could be achieved. The values
reported for the different experiments are average values of the
ratio computed for the different classes: the higher the value the
better discriminable the classes are. It is important to note that
the the vectors of geometrical features extracted by our system
have low stability, i.e. the intra-class dispersion of the different
features is of the same order of the inter-class dispersion (from
three to two times smaller). This suggests that performance
could be improved with more accurate feature detectors where
the process of feature extraction (see also [19], [18] where the
use of manually extracted features is studied). It is not clear,
however, how to design more accurate feature detectors.

An important issue is how performance scales with the size
of tha data base. To obtain these data, a number of recognition
experiments have been conducted on randomly chosen subsets
of classes at the different required cardinalities (200 random
subsets at each cardinality). The plots in Fig. 10 report both
recognition performance and the R,,as ratio. As expected, both
data exhibit a monotonically decreasing trend for increasing car-
dinality of the class.

A possible way to enhance the robustness of classification is
the introduction of a rejection threshold. The classifier can then
suspend classification if the input is not sufficiently similar to
any of the available models. Rejection could trigger the action

4We could have chosen other classifiers instead of a Bayes Classifier.
The HyperBF classifier, used in previous experiments of 3D object recog-
nition [25], [6], allows the automatic choice of the appropriate metric,
which is still, however, a weighted Euclidean metric.

of a different classifier or the use of a different recognition strat-
egy (such as voice identification). Rejection can be introduced,
in a metric classifier, by means of a rejection threshold: if the
distance of a given input vector from all of the stored models
exceeds the rejection threshold the vector is rejected. A possi-
ble figure of merit of a classifier with rejection is given by the
recognition performance with no errors (vectors are either cor-
rectly recognized or rejected). The average performance of our
classifier as a function of the rejection threshold is given in Fig.
1. °

3. TEMPLATE MATCHING STRATEGY

The other class of approaches to automated face recognition
has at its core a very simple recognition technique, based on
the use of whole image grey-level templates. The most direct
of the matching procedures is correlation and is the basis of
the work of Baron (see [1]). The system we implemented is
an extension of the little known work of Baron (extensively de-
scribed in [1]). First, the image is normalized using the same
technique described in the previous section. Each person is rep-
resented by a database entry whose fields are a digital image of
his/her frontal view and a set of four masks representing eyes,
nose, mouth, and face (the region from eyebrows downwards), as
shown in Fig. 12. The location of the four masks relative to the
(normalized) eye position is the same for the whole database.

When attempting recognition, the unclassified image is com-
pared in turn to all of the database images, returning a vector
of matching scores (one per feature) computed through normal-
ized cross-correlation. The unknown person is then classified as
the one giving the highest cumulative score.

The main difference between our approach and that of Baron
lies in the window selection procedure. Whereas Baron’s selec-
tion was done interactively by a human operator, which could
select the windows (s)he considered to be most distinctive, our
selection procedure is entirely automatic and the same set of
features is selected for all of the available images. It is then
possible to automatically add a complete database entry for an
unknown person, thereby easing the update of available infor-
mation. Another, minor difference can be found in the eye loca-
tion procedure used for normalization: the one we propose uses
a single template at different scales (as opposed to the sixteen
of Baron’s).

As already pointed out, correlation is sensitive to illumination
gradients and the question arises whether there is a way to
preprocess the compared images to get rid of this confounding
effect. Trying to decide experimentally this point, we ran four
different experiments of recognition using correlation on images
preprocessed in different ways. The different normalization used
in the comparison were:

I : no preprocessing: a plain intensity image was used;

I/ < I> : intensity normalization using the ratio of the lo-
cal value over the average brightness in a suitable neigh-
borhood;

D(I) : gradient magnitude: the intensity of the gradient,
computed with an L; norm on a Gaussian regularized im-
age was used (|9:1| 4 (9y1]);

DD(I) : the Laplacian of the intensity image (9z21 + 9yyl);

The recognition rates we have been able to obtain with the
different preprocessing techniques are reported in Fig. 14. The
best results, both in term of recognition have been obtained
using gradient information.

5Experiments by Lee on a OCR problem ([21]) suggest that a HyperBF
classifier would be significantly better than a NN classifier in the presence
of rejection thresholds.



The use of an intensity normalization, besides that of the
normalized correlation coefficient, proved to be marginally ef-
fective (a consistently higher MIN/MAX ratio at the different
scales and a minor improvement in the recognition rate at the
more resolved scale).

An interesting question is the dependency of recognition on
the resolution of the available image. To investigate this de-
pendency, recognition was attempted on a multiresolution rep-
resentation of the available pictures (a gaussian pyramid of the
image suitably preprocessed). The range of resolution was 1+ 8
(the gaussian pyramids having 4 levels).

As the performance plots reveal, recognition is stable on a
range 1 + 4, implying that correlation-based recognition is pos-
sible at a good performance level using templates (i.e. the win-
dows we mentioned earlier) as small as 36 x 36 pixels®. A con-
sequence of such a result is that the common objection that
recognition through template matching is too expensive com-
putationally does not really apply in this case *

How discriminating are the single facial features? A prag-
matic answer is to assign the discrimination power based on the
recognition performance using each single feature. The experi-
mental analysis shows that the features we used can be sorted
by decreasing performance as:

1. eyes
2. nose
3. mouth

4. whole face template

The recognition rate achieved with a single feature (eyes, nose
or mouth) is remarkable and consistent with the human ability
of recognizing familiar people from a single facial characteristic.
The similarity score of the different features can be integrated
to obtain a global score. The integration can be done in several
ways:

¢ choose the score of the most similar feature;

o the feature scores are added;

o the feature scores are added, but each feature is given a

different weight (the same for all people);

o the features are added using a person dependent weight;

o the features scores are used as inputs to a classifier such as

a Nearest Neighbor or a HyperBF network (see [26], [27])
The strategy adopted in the reported experiment is the second
one: the features score are simply added. The integration of
more features has a beneficial effect on recognition and on the
robustness of the classification (see the plots of the R,,ar value
in Fig. 17).

Interestingly, the whole face is the least discriminating tem-
plate. This is partly due to the difficulty of perfectly normaliz-
ing the scale of the pictures. It is also expected, since the whole
face is the template most sensitive to slight deformations due
to deviations from frontal views.

In this approach both geometrical and holistic feature infor-
mation is used at the same time. Geometrical information plays
a role when the mask stored in the database is used to locate the
corresponding zone on the unknown image, while holistic infor-
mation is taken into account by the pixel-by-pixel comparison
of the correlation procedure. Performance can be increased by
using templates from more than one image per person. A last

6Preliminary psychophysical recognition experiments have shown re-
markable agreement with the scale dependence exhibited by template-
matching recognition.

"The time needed to compare two images, using eye, nose and mouth
templates, at an interocular distance of 27 pixels, is approximately 25msec
on a SPARCStation IPX. Comparison of an unknown image to the whole
database can take advantage of special-purpose hardware or distributed
processing. An efficient strategy for template matching has been recently
proposed in [31].

experiment, in which we used templates from two images per
person in the reference database, has shown perfect recognition
(at an intermediate resolution and on this data base) and in-
creased MIN/MAX performance at all resolutions (see Fig. 19),
when using as a matching score the maximum of the cumulative
scores from the two available database images.

4. CONCLUSION

We have investigated performance of automatic techniques
for face recognition from images of frontal views. T'wo different
approaches have been compared in terms of two simple, new
algorithms that we have developed and implemented. The two
approaches are:

o identification through a vector of geometrical features;

o identification through a template matching strategy.

Our use of template matching is superior in recognition per-
formance on our data base. It is also simpler. The feature-
based strategy, however, may allow a higher recognition speed
and smaller memory requirements (information can be stored
at one byte per feature, requiring only 35 bytes per person in
our experiments). The result is clearly specific to our task and
to our implementations. Additional features may be used and
it may be possible to extract them more precisely. We don’t
believe, however, that it is reasonable to separate the feature
extraction stage, assuming for instance features extracted man-
ually, in the evaluation of the approach: features are only as
good as they can be computed.

It must be stressed that the template-matching scheme
we have implemented, though simple, is quite different from
straight grey-level correlation on the whole face. It uses prepro-
cessing of the image that transforms it into a map of the mag-
nitude of the gradient, quite close therefore to an edge map. A
key to its success is how it exploits several different and smaller
templates for the eyes, mouth and nose, respectively, in a way
somewhat similar to using feature detectors. Most importantly,
its first, critical step is the same as in the feature-based ap-
proach: detection of the eyes (through correlation matching eye
prototypes) and associated automatic normalization of scale and
orientation of the image. From this point of view, one may argue
that our template matching algorithm contains some elements
of feature-based approaches: features (the eyes) are used to
normalize and template matching is done separately on a set of
distinct features (eyes, nose, mouth). It is indeed possible that
successful object recognition architectures need to combine as-
pects of feature-based approaches with template matching tech-
niques.

Recent work in our laboratory has studied recognition
schemes based on K-L decomposition, similar to a system re-
cently described by Turk and Pentland ([33], see also [20]). Since
principal components are linear combinations of the templates
in the data basis, the technique cannot achieve better results
than correlation but it may be capable of achieving a compa-
rable performance with a smaller computational effort. Our
results ([30]) indicate a performance of about 96 percent with
a fraction of the computational effort needed by our correlation
approach (which had a superior performance on the same test-
ing set). Notice that we expect the K-L technique of Dallaserra
and Brunelli to have better performance than Turk’s, because of
their use of several small templates, more stable against image
distortions.

In a recent paper [6] we have used the HyperBF network in
conjunction with feature vectors to recognize a 3D object from
any view: the inputs to the network were the parameters of the
features (such as their position in the image). It is interesting to



note here that a HyperBF network having as inputs the gradient
magnitudes at each pixel and as centers appropriate templates
(different centers for different shifts) would be very similar to
our template matching scheme (see Fig. 20). It would be some-
what more sophisticated, since it would correspond to a linear
classifier on gaussian functions of the correlation coefficients in-
stead of a simple max operation on the correlation coefficients
themselves.?

In summary, our correlation-based approach seems to offer
satisfactory results for recognition from frontal views. The re-
sults obtained so far should be verified on larger and more sig-
nificant data bases. A more difficult problem that we did not
consider here is the reliable rejection of images of faces not con-
tained in the data basis. On the other hand, there are possible
ways to improve the robustness of our scheme, for instance, by
expanding the set of templates. The computational complex-
ity of our scheme is high but not insurmountable, especially if
special purpose hardware is developed.

How can the scheme be extended to deal with non-frontal
views? If several views of each person are available for differ-
ent viewpoints, it should be possible to use almost the same
scheme, at the expense of a considerably greater computational
complexity °.

It may be the case, however, that only one frontal view per
person is available to generate the person’s templates. Clearly
one single view of a 3D object (if shading is neglected) does
not contain sufficient 3D information. If, however, the object
belongs to a class of similar objects (prototypes) of which many
views are available, it seems possible to make reasonable ex-
trapolations and to guess correctly other views of the specific
object from just one 2D view of it. Humans are certainly able to
recognize faces turned way 20-30 degrees from frontal from just
one frontal view, presumably because they exploit our extensive
knowledge of the typical 3D structure of faces.

One of us has recently discussed ([24]) different ways for solv-
ing the following problem: from one 2D view of a 3D object
generate other views, exploiting knowledge of views of other,
“prototypical” objects of the same class. We are currently inves-
tigating the possibility of using three dimensional information
to support recognition from non frontal views. In particular the
possibility of using a three dimensional model (explicitly, given
a volumetric description of an average face, or implicitly, as de-
rived from a set of two dimensional views, see [24]) to generate
the appearance of a face from different viewpoints seems to be
promising.

It is worth mentioning that the results obtained (performance
as a function of image preprocessing, of compared feature and
image resolution) may provide some insights into human mech-
anisms of facial recognition, especially when considered against
the background of available physiological data on neurons in
area IT of the monkey cortex, that respond specifically to im-
ages of faces (see [23]).

Face identification is by no means exhaustive of face percep-
tion related tasks. People are able to discriminate sex, age, and
expressions from faces. Gender classification, for example, has
been recently investigated using either geometrical features ([7])
or templates ([16], L. Stringa, personal communication, T. Se-
jnowski). The comparison between the results obtained using
geometrical features [7] and templates (Stringa) on almost the
same database suggests that also in this task a template based

81t would also offer the possibility, in principle, to learn optimal centers
— l.e. templates.

9Use of a HyperBF classifier with the ability of interpolating between
views may be particularly advantageous.

approach has superior performance, but may not be as consis-
tent with properties of human vision in gender classification.

APPENDIX

A. CORRELATION DEPENDENCY ON ILLUMINATION, ROTATION
AND SCALE

The practicality of template matching is a function of its ro-
bustness against deformation and noise in the image, relative
to the templates. Of course, a suitable set of templates can
cope with expected deformations but there are obvious trade-
offs between sensitivity to deformations and number of needed
templates. Typical image deformations to be expected in our
case are illumination variation, scale variations, and deviations
from frontal views. The following table and graphs address the
dependency of the correlation value on these deformations.

The dependency of the correlation value on illumination has
been measured by the ratio of average correlation, computed
on the images of Fig. 21, to the average value as computed on
matching faces of the database.

PreProcessing | Corr. Reduction
No Norm. 1.50
I/ <1> 1.20
|01 + |9y 1| 1.18
Ozzd + Oyyl 1.19

The preprocessing based on the computation of gradient mag-
nitude gives the greater MIN/MAX ratio and exhibits the low-
est illumination dependence. It is therefore the most invariant
against illumination variations.

The dependency on scale and rotation (in the image plane)
has been computed by deforming with an affine transformation
a single testing image (see Figs. 22,23).

Finally, the dependency of the correlation value on rotations
around the central vertical axis lying in the image plage has
been determined using a set of images at (approximately) given
rotation degrees. Results are shown in Fig. 25.
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Fig. 1. Horizontal and vertical edge dominance maps
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Fig. 5. The parameters used to give a coarse description of the
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Fig. 2. Typical edge projections data

Fig. 3. LEFT: correspondences between the (x,y) coordinate system
and the elliptical system; RIGHT: the elliptical annulus delimit-
ing the search.

Fig. 6. Geometrical features (white) used in the face recognition
experiments

Fig. 4. The edge intensity map (top) and the followed path in the
elliptical system (bottom).
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Fig. 13. Different image normalizations (from left to right: I, I/ <
I>,|VI|g, and 9321 + dyyI)
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Fig. 20. A network diagram of the Hyper Basis Functions technique

Fig. 21.
from illumination

Images used to determine the dependency of correlation
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