ANIMAL: AN IMage ALgebra

An Image Processing Environment based on XLISP

R. Brunelli and C. M. Modena
Istituto per la Ricerca Scientifica e Tecnologica

1-38050 Povo, Trento, ITALY

Abstract— In this paper we present ANIMAL, an interactive
environment for image processing that is oriented toward
the rapid prototyping, testing, and modifications of algo-
rithms. In the first part the theoretical foundations of the
environment are presented. The concept of image algebra is
introduced through the definition of multisort algebra. In
the second part a description of the implementation is given,
together with some examples to illustrate the flexibility and
open-ended nature of the system.

Keywords: Image algebra, Image processing, Image analysis,
Parallel Processing.

1. INTRODUCTION

In this paper we present ANIMAL, an interactive environment
for image processing oriented toward the rapid prototyping,
testing, and modifications of algorithms. In the first part the
theoretical foundations of the environment are presented. The
concept of image algebra is introduced through the definition of
multisort algebra. ANIMAL is both a theoretical framework and
an implementation of the working environment described in the
second part. The whole environment can be seen as an extension
of an existing LISP interpreter (XLISP'). We added to the orig-
inal LISP kernel three other functional blocks: a software SIMD
(Single Instruction Multiple Data) machine [1], a set of standard
image processing operators (filters, statistical and slicing oper-
ators,...) and an object-oriented graphic interface. The LISP
interpreter and the self-documenting capability of the opera-
tors working on images make ANIMAL a very interactive, flexible
environment. One of the main goal of the project was the porta-
bility of the environment and it has been obtained through a
C-language coding and use of the X11-Windows System? the de
facto standard of windowing for UNIX® workstations.

2. WHAT IS AN ALGEBRA?

The goal of this paragraph is to present some definitions of
modern and universal algebra [2][3] that will be useful for a
rigorous definition of ANIMAL.

Definition 1: An algebraic system (or algebra) is a pair
(A; F), where A is a non-empty set and F' is a (possibly empty
or infinite) collection of operations: each operation f; € F is a
function

fii A" 4 (1)

where n(i) is a natural number that depends on f;, called arity.
An operation like f; is called n(7)-ary operation on A. Generally,
we refer to any n-ary operation as finitary operation.

Definition 2: A partial algebra is an algebra where some of
the operations may be defined only partially, i.e. an n-ary op-
eration is not defined on the entire domain A™.

IXLISP: An Experimental Object-oriented Language by David Michael
Betz (1986).

2X Windows System is a trademark of MIT.

3UNIX is a trademark of AT&T Bell Laboratories.

Example 1: (N;—) the positive integers under binary sub-
traction. This is a partial algebra because m — n is undefined if
m < n.

Definition 3: A heterogeneous algebra (or multisort algebra)
is a family of sets {A;}icr together with a collection F' of (het-
erogeneous) functions: for each n-ary operation f € F' there is
an n + 1-tuple (21,...,0n,in41) € 1™ such that

f:A¢1X~~~><AZ‘n—>A¢n+1 (2)

Example 2: A vector space (A, K;+,—, @, O, X,) is a het-

erogeneous algebra with two carriers: vectors A and scalars K.

(A; 4+, —) is an additive group with a binary and a unary oper-

ation:

+ : AxA— Aand— : A — A; (3)

(K;®,6, %) is a field; and e :
cation.

Remark If F is a set (of operators) we can define an injective

map w from F to X, where X is the set of all names (strings).

Sometimes we will write w(f) = ’f’; 1’ is independent of the
definition of f because it is only a name.

K x A — Ais a scalar multipli-

3. ANIMAL AS ALGEBRA

In this paragraph we give an abstract definition of ANIMAL as
a particular heterogeneous algebra.
Notations Let us now consider the set M of all infinite Z-
matrices with entries in Z (it can also be viewed as the set
of all the functions on Z x Z — Z). We call P (parameters) the
set of all the n-tuple with integer or real values for each n € N.
With T we denote the set of all (ordered) trees whose nodes
belong to X or P.

Definition 4: On the family of all the unions spanned by the
sets

M x T, {Z"}nens, {R" }ren (4)

we can define a set F' of partial heterogeneous operators, so
that we obtain a partial multisort algebra. We call images the
elements of the set M x T and ANIMAL the corresponding algebra
(from AN IMage ALgebra). The second entry of an image is
called history.
Remark Often we call image only the first element m of the pair
(m, k), when there is no danger of confusion.

Example 3: Let

LEFT : MXxTxZ—-MxT (5)
be an operator of F' defined as follows:
LEFT((m, k), z) = (LEFT"(m, z),concat(w(LEFT), h,z)) (6)

where LEFT*(m, z) : M x Z — M is such that (LEFT"(m, z))i; =

m; j4+- for each ¢, 7 in Z | and concat yields a tree with root the

name w(LEFT), first subtree & and second subtree the leave z.
Definition 5: An image (m, h) is called coherent if

eval(h) = (m, h) (7)

where eval is a function that substitutes each name w(f) present
in the history h with the operator f, using the injectivity of w.

4. IMAGES IMPLEMENTATION

We cannot implement the general model of image, because
the first entry of an image is a boundless matrix. However, for
our purposes we can restrict our interest to a limited region
of the image, bounded by a rectangular region of the discrete
plane; outside this region the elements of the matrix have a con-
stant value that can be changed, on an image by image basis, at
every computational steps. This implementation requirement is
not restrictive, as real images are bounded anyway. Such an
infinite matrix is consequently equivalent to a structure consist-
ing of a starting point of the interesting region (called focus, the
data of the region and the constant value outside it. There are
several advantages in representing images as boundless arrays:

o all points, including those on the boundary of the focus,
have the same number of neighbours (this is important in
convolutions, filtering, template matching, and so on);

o the shift functions are performed without loss of informa-
tion and are simply realized changing focus coordinates;

o the operations acting on two images defined through binary
commutative operations on integers (e.g. ADD, AND are
commutative as they are independent of foci size.

The history is useful to trace back the elaborations performed
on a given image: it records all the operations which acted on
the image, together with their parameters. In this way one can
use the history (by evaluation as LISP list) later on, either to
reproduce the output image or, after some editing, to realize
a new library operator. The possibility to enable/disable the
history tracing allows the user to create new operators that
output coherent images.

A (real) image can be represented as follows:

x-init, y-init,
data-array,
outside-value,
h-flag, history;

and this corresponds to our implementation.

5. ANIMAL SIMD MACHINE

One of the main applications of ANIMAL is in the rapid proto-
typing on algorithms to be implemented on a VLSI chip whose
structure is that of a SIMD machine [4]. Let us briefly recall
what a SIMD machine is. The acronym SIMD stands for Single
Instruction Multiple Data[1]. This is one of the possible parallel
organizations for a set of processing elements (PE) and corre-
sponds essentially to array processors. An array processor is
a synchronous parallel computer with multiple arithmetic logi-
cal units (PEs) that can operate in parallel in lock step fashion.
A set of masking schemes can be used to enable/disable the
processing elements during the execution of vector instructions.
The topological structure of a SIMD array processor is mainly
characterized by the data routing network used to interconnect
the processing elements. Formally, such an inter-PE communica-
tion network can be specified by a set of data-routing functions
[5]. If we identify the addresses of all PEs in a SIMD machine by
the set S, each routing function is a bijection from S to S. When
a routing function f is executed via the interconnection network
the PE(?) copies its data into the data location of PE(f(I)). A
SIMD computer C is then characterized by the following 4-tuple:

C=<N,F,I,M >

where:
N is the number of PE in the system;
F' is a set of data-routing functions provided by the intercon-
nection network;

I is the set of machine instructions for scalar, vector, data

routing and network manipulation operations;

M is the set of masking schemes.

The SIMD organization is a natural one for fine-grained parallel
machines and for image processing tasks. Many early vision
problems map naturally onto an array of processors, each one
performing the same instruction using the data available in the
local neighbourhood. A software simulation of a SIMD machine
is available in ANIMAL.

We can associate a processing element to every point of the
plane Z x Z. To realize the local memory of the PEs (PEM) we
can imagine to overlay an image on the plane Z x Z. Multiple
local memories can be realized using list of images, each pixel
corresponding to a single local memory of the aligned PE (a
multi-layer memory structure). The interconnection network is
realized through the shift operation: in this way we can align
each PEM with every other PEM, in a rigid way for the whole image
structure. This allows us to use the near-neighbor-meshes (4-
connected, 6-connected, 8-connected) frequently used in image
processing and many more. Each PE can then operate on its data
and on the data of virtually every other PE. The instructions a
single PE can execute are the following:

arithmetic : add sub mult div

relational : > < > <;max min

logical : or and xor not.

All of these function (with exclusion of not) have the same struc-
ture:

(function arg: args &optional args)

where:
argr must be an image;
args can be an image or an integer;
args can be a bit-image or a 4-tuple of points identifying a
rectangular region in the plane.

The first argument corresponds to the data-output of the
corresponding PE; the second argument corresponds to the data
obtained via the interconnection network and stored in the PEM.
If the second argument is an integer this corresponds to the
broadcasting of data by the CU. The modification of a single
pixel via the standard setf/aref LISP function corresponds to
the distribution of data via the system bus. The third argu-
ment reflects the possibility of defining a mask to inhibit PEs’
execution. The default activation mask is on in the rectangular
region bounding the image arguments. An alternative activa-
tion mask can be specified using a single bit image (1 = active,
0 = disabled) or via a 4-tuple identifying a rectangular region.

6. THE ANIMAL ENVIRONMENT

The image processing community needs flexible and powerful
tools to develop and implement algorithms ([6a][6b][6¢], [7]).
One of the major difficulties stems from the huge variety of
specialized hardware used for image processing tasks and the
related types of software tools. Our work stems from the belief
that there is no sharp division between concept of hardware and
software. They are dual concepts: the functions of one can be
implemented by the other. We can then effectively consider a
language as a software machine [8]. .br ANIMAL is a natural out
growth of this philosophy. We chose a very flexible language,
LISP, and we extended it with a software implementation of an
SIMD machine allowing the manipulation of images as a whole
and not as a collection of pixels. This results in two different
architectures within the same environment:

serial: the original LISP kernel;
parallel: the implemented SIMD machine.

Fig. 1. Binary image representing the silhouette of a wrench and its
edges computed using ANIMAL EDGE opeerator

Each problem can be solved using the structure best reflecting
it. It is important to note that a parallel algorithm implemented
on a serial machine, that simulates a parallel computer, does not
run necessarily much slower than a corresponding serial solution
on the same machine [8]. Some tests with ANIMAL show that the
efficiency can be almost the same.

The environment we have implemented satisfies the following
fundamental requests:

flexibility : image dimensions are unconstrained and images

can be stored with variable precision (1-bit, 8-bit, 16-bit,
32-bit and float);

efficiency : the relational and arithmetic operators of the

SIMD machine are carefully optimized for speed;
universality : image, numerical and structural processing can
be performed in the same environment;

extensibility : the use of a LISP interpreter guarantees a good

interactivity and an excellent extensibility of the system
with the possibility to create new functions (the user ex-
pands the set F' of ANIMAL operators).

We have implemented in the kernel of ANIMAL many operators
like the logical, arithmetic and relational operations on images,
filters, statistics (histogram, cooccurrence matrix, etc.), extrac-
tion of connected components, and many others: their detailed
description is beyond the scope of this paper; the reader is re-
ferred to [9][10]. Using the SIMD machine it is possible to cre-
ate many useful operators by functional composition of the old
ones. A mathematical framework for the developing of image
processing algorithms is mathematical morphology [11][12]. The
available arithmetical and relational operators make the imple-
mentation of its basic operations (erosion, dilation, opening and
closing) an easy task. Their combination into more powerful
blocks can be realized through the LISP functional mechanism.
This approach reflects the original idea of complete and self
contained stages of image analysis algorithms.

The following EDGE algorithm is an example of a simple com-
position of basic image operators taken from a still growing
library:

Example 4:

(defun EDGE (img)
(AND img
(NOT (AND (UP img)
(AND (DOWN img)
(AND (LEFT img)
(RIGHT img))))))

In Fig.1 we reported the output of the EDGE operator applied to
a binary image.

As another example in which image functions and standard
LISP functions are combined, we present the general convolution

algorithm:
Example 5:

(defun CONVOLVE (img knl)

(let* ((deltax (/ (nth 1 (array-dimensions knl)) 2))
(deltay (/ (nth O (array-dimensions knl)) 2))
(mymask (make-mask (aref img 'X)

(aref img "Y)
(aref img "WIDTH)
(aref img "HEIGHT)))

; my-tmp is a temporary image
; initialized to the null image

(my-tmp (MAKE-IMAGE (aref img 'X)
(aref img ’Y)
(make-array
(array-dimensions
(aref img 'DATA))
:element-type 'INT)))

(do (i (- deltay) (+1 1))
((; 1 deltay) my-tmp)
(do ((j (- deltax) (+] 1))
(7] deltax))
(setq my-tmp (ADD
(MULT
(SHIFT image (- j) (- 1))
(aref knl
(+1 deltay)‘
(+] deltax)))
my-tmp mymask)))))

Remark From the code of example 7.2 we have left out the
history tracing mechanism.

Images are essentially visual objects and human beings found
it more natural to see them represented on a screen using grey-
levels or colors than to see their numerical print-outs. ANIMAL
provides a graphic interface based on the X11-Windows System
and is realized through an object system. It consists of several
classes of windows specialized for image display, function and
histogram plots. Each class allows the user to select interac-
tively semantically meaningful regions (rectangular region for
an image window and ranges for function or histogram plots)
and supplies some other basic functions like zoom and scroll.
.br The whole interface is written in XLISP using a set of func-
tions that directly use the X11-Windows System: this struc-
ture allows the willing user to customize the environment. We
should note that the graphic interface is completely independent
of the implemented image processing operators, so that should
the X11-Windows System not be available on a particular com-
puter, one can build a new graphic interface without changing
the kernel of ANIMAL. It is possible to process images even when
no graphic interface is available: the processed images can be
saved in files and can be viewed later on using other programs.
Remark ANIMAL is highly portable, because the entire environ-
ment is written in C-language and uses the X11-Windows Sys-
tem, a windowing system that is rapidly becoming a de facto
standard®.

7. CONCLUSIONS

In this paper we described ANIMAL: AN IMage ALgebra, as
a heterogeneous algebra whose family of operators can grow
according to users’ needs. The environment, implemented at

“Some technical information: ANIMAL consists of 1MB of C-language
source code, 400KB of executable code and 200KB of LISP code. Image
dimensions are limited by the maximum virtual memory available to the
process. The current implementation runs on HP9000 S300, Sun3, Sun4,
Sun386i. ANIMAL is available on a non disclosure agreement by sending
a request directly to the authors.

I.R.S.T., gives to the user a set of fast image processing oper-
ators and the possibility to combine them under a LISP inter-
preter for specific applications. ANIMAL proved very useful in
reducing the time lag between the formulation of an algorithm
and its implementation, relieving the user from many time con-
suming programming details.

REFERENCES

[1] M. J. FLYNN, Very High-Speed Computing Systems, Proc. IEEE,
Vol. 54, 1966; pp. 1901-1909;

[2] J. D. LIPSON, Elements of Algebra and Algebraic Computing,
Addison-Wesley, Reading MA, 1981; pp. 57-64;

[3] G. BIRKHOFF, The Role of Algebra in Computing, in: Computers
in Algebra and Number Theory, G. Birkhoff and M. Hall Eds., SIAM
AMS Proc., Vol. IV, 1971,

[4] L. STRINGA and A. ZORAT, A single Chip Sensor and Processor:
A Strategic Project, in: Biological and Artificial Intelligence Systems,
E. Clementi and S. Chin Eds., ESCOM, 1988; pp. 499-508;

[5] K. HWANG and F. A. BRIGGS, Computer Architecture and Par-
allel Processing, McGraw-Hill, New York NY, 1985; pp. 325-388;

[6a] Z. KULPA, PICASSO, PICASSO-SHOW and PAL - A Develop-
ment of a High-level Software System for Image Processing, pp. 13-24;

[6b] T. RADHAKRISHNAN, R. BARBERA, A. GUZMAN and A.
JINICH, Design of a High-level Language (L) for Image Processing,
pPp. 25-40;

[6c] S. LEVIALDI, A. MOGGIOLO-SCHETTINI, M. NAPOLI, G.
TORTORA and G.UCCELLA, On the Design and Implementation of
PIXAL, a Language for Image Processing, pp. 89-98; in: Language and
Architectures for Image Processing, M.J.B. Duff and S. Levialdi Eds.,
Academic Press, Orlando FL, 1981;

[7] A. P. REEVES, A systematically Designed Binary Array Proces-
sor, IEEE Trans. on Computers, Vol. C-29, No. 4, 1980;

[8] A. WOOD, The Interaction between Hardware, Software and Al-
gorithms, in: Language and Architectures for Image Processing, M. J.
B. Duff and S. Levialdi Eds., Academic Press, Orlando FL, 1981; pp.
1-11;

[9] R. BRUNELLI and C. M. MODENA, ANIMAL: AN IMage ALge-
bra; User’s Guide, LR.S.'T. Int. Rep., 1988;

[10] R. BRUNELLI and C. M. MODENA, ANIMAL: AN IMage AL-
gebra; User’s Manual .LR.S.'T. Int. Rep., 1988;

[11] J. SERRA, Introduction to Mathematical Morphology, Comput.
Vision, Graphics and Image Process., Vol. 35, No. 3, 1986; pp. 283-305;

[12] R. M. HARALICK, S. R. STERNBERG and X. ZHUANG, Image
Analysis Using Mathematical Morphology, IEEE Trans. Pattern Anal.
Machine Intell., Vol. PAMI-9, No. 4, 1987; pp. 532-550.

