HyberBF Networks for Gender Classification

R. Brunelli!, T. Poggio?!
! Istituto per la Ricerca Scientifica e Tecnologica
1-38050 Povo, Trento, ITALY
2 Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, USA

Abstract— A set of geometrical features is extracted
automatically from digitized pictures of frontal views of
people without facial hair. This compact description is
then used to train two competing HyperBF networks
to classify according to gender. The results using a
database of twenty males and twenty females show an
average performance of 79% correct gender classification
on images of new faces. Correct classification on vectors
corresponding to new face images present in the train-
ing set but not used in the training phase rises to 86%.
Preliminary experiments to assess human performance
on the same set of grey level images give an average
result of 90% which, while higher than network perfor-
mance, suggests that peoples’ performance is compa-
rable. Interestingly, the HyperBF technique finds the
relative weights of the different features and converges
to prototypes of the male and female face that seem to
exaggerate their difference, somewhat like caricatures
do.

1. INTRODUCTION

Faces allow people to establish, among other things, the
gender of a person, his (her) age and, to a certain extent,
emotions. In the current paper we address gender classifi-
cation and will show how limited geometrical information
accounts for correct sex attribution.

There are two main strategies for face recognition (and
for object recognition in general): feature comparison and
template matching. The former relies on a set of selected
features which must be computed from an available im-
age while the latter directly compares the appearance of a
given instance with a reference image by means of a suit-
able metric. The first strategy, when feasible, works with a
compact representation of the objects to be matched which
are usually represented by low (as compared to the num-
ber of pixels of a template) dimensional vectors. The set of
features used for recognition or classification is critical as
it must capture the discriminating ones and give to each of
them the correct weight.

In some recent work [4] the problem of face recognition
and gender classification has been tackled using the inter-
nal representation of a compression network as unsuper-
vised feature extractor and a (smaller) classification net-
work taking as input the extracted features. Recent theo-
retical results [2] show that the internal representation of
such a network is closely related to a Karhunen-Loewe ex-
pansion (see also [8], [13]) so that the work of Cottrell et
al. should probably be considered as classified in the tem-
plate matching category. In our paper we want to show
how limited geometrical information (see Fig. 1 for the set
of features) can give reasonable performance and possibly
provide some insight into human mechanisms.
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Fig.1. Geometrical features (white) used in the face recognition
experiments

2. GENDER CLASSIFICATION

The inspection of a face allows us to establish, usually
without much effort, the gender of the person we are look-
ing at. It seems natural to mimic this ability with a com-
puter program. The experiment we did is based on the use
of a geometrical feature vector. In fact, the same vector
extracted for recognition purposes in a previous paper [3]
was used. The only difference is that the face description
has been symmetrized (left and right eyebrow and chin in-
formation has been averaged) thereby reducing the dimen-
sionality of the vector.



All of the features have been extracted automatically,
from images whose rotation and scale was previously nor-
malized (by automatically locating eyes). The paradigm
we used is that of learning from examples, where a system
learns to discriminate between males and females given a
sufficient number of examples. The system we used is based
on a classifier called Hyper Basis Function Network (see
[10]).

Learning from examples can be regarded, whenever the
inputs and output are expressible as numerical vectors,
as the reconstruction of an unknown function from sparse
data. From this point of view learning is equivalent to func-
tional approximation. Hyper Basis Function Networks are
a tool for multivariate function approximation and rest on
a solid background of results in this field.

Before describing the networks used for gender classifi-
cation let us briefly recall the fundamentals of the Hyper
Basis Functions Network.

Radial Basis Functions can be regarded as a special case
of Regularization Networks introduced in [10] as a general
approximation technique that can be used in problems of
learning from examples.

A scalar function can be approximated, given its value
on a sparse set of points {Z;}, by an expansion in radial
functions:
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where || - || represents the usual Euclidean norm. The

computation of the coefficients ¢; rests on the invertibility
of matrix H;; = G(|| z; — z; ||) which has been proved (see
Micchelli [9]) for functions such as:
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It is possible to use fewer radial functions than examples,
i.e. data points. The resulting overconstrained system can
be solved using a least square approach under the condi-
tions of Michelli’s theorem and proves to be useful when
many examples are available [10].

Poggio and Girosi [11] have shown that the RBF tech-
nique is a special case of the regularization approach to the
approximation of multivariate functions. From a more gen-
eral formulation of the variational problem of regularization
they derive the following approximation scheme, instead of
equation (1):
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where the parameters t,, which we call “centers,” and the
coeflicients ¢, are unknown, and are in general fewer than
the data points (n < N). The term p(x) is a polynomial
that often can be neglected, though it may be useful to keep
the constant and linear terms. The norm is a weighted norm

lI(x — ta)lliv = (x — ta) "W W (x — ta) (3)

where W is an unknown square matrix and the superscript
T indicates the transpose operator. In the simple case of di-
agonal W the diagonal elements w; assign a specific weight
to each input coordinate, determining in fact the units of
measure and the importance of each sensory input. In this

Fig. 2. The competing HyperBF Networks used for gender
classification

formulation the learning stage is used to estimate not only
the coefficients of the RBF expansion, but also the met-
ric (problem dependent dimensionality reduction) and the
position of the centers (optimal examples selection).

Let us think of a classification task in which the function
range is represented by the closed interval [0,1]. The value
of the function can be interpreted as a fuzzy predicate. If
a gaussian function is used the center of expansion is the
only point at which the predicate assumes value 1: it can
be effectively interpreted as a prototype (note that the use
of HyperBF Networks for classification is directly related
to Bayes estimation as pointed out in [10]).

Using a geometrical vector as input, gender classification
has been attempted by using two competing networks: one
for male recognition and one for female recognition (see
Fig. 2 for the network structure). The gender to be asso-
ciated to a given vector is taken to be that corresponding
to the network with the greatest response. The reason for
two competitive networks is that no threshold is then nec-
essary. It is interesting to note how each of the networks
is able to create a meaningful prototype of the class it rep-
resents. As can be seen in Figure4 the expansion center,
which is a vector with components free to move during the
“learning” process, has converged at the end of the train-
ing phase to what could be considered a caricature of a
(fe)male face. It does not correspond to the average value
on the separate subsets: it emphasizes the discriminating
features. The learning stage is also able to change the met-
ric to account for the different weight and significance of
the different features. Of the sixteen features only three are
given a noticeable weight: distance of eyebrow from eyes,
eyebrows thickness and nose width. These are followed by
the vertical position of nose and mouth and the two radii
describing the lower chin shape; the remaining features are
considered ineffective.

The database used for the classification experiments
comprised 168 vectors equally distributed over 21 males
and 21 females. Three different performances were mea-
sured:

« on the vectors of the training set (90% correct);

« on novel faces of people in the training set (86% cor-

rect);
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o on faces of people not represented in the training set
(79% correct)

The performance on a testing set, having null intersec-
tion with the training set, has been estimated with a leave-
one-out strategy. Having n available examples, training
was done on the first n — 1 data leaving the last one for
testing. The data set was then rotated, so that each of the
available examples was used in turn as a testing example.
The performance was estimated by taking the percentage
of correct gender assessment on the resulting tests. The
performance obtained is of 79% correct classifications.
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Fig. 3. Feature weights for gender classification as computed

by the HyperBF Networks
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Fig. 4. TOP. The male prototype (left) and the female proto-
type (right) as synthesized by the HyperBF Networks with
movable coefficients, centers and metric. The darker the fea-
ture, the more important it is according to the corresponding
entries in the diagonal metric W. BOTTOM. The average
male face (left) and the average female face (right)

Human performance in such classification tasks (as well
as recognition) is widely believed to be nearly perfect. To
assess the effective ability of people in gender classifica-
tion we have performed some informal psycophysical ex-
periments using as stimulation pattern a grey level image
of the face from which the local average was subtracted
(to make the different images as similar as possible). As
Figure5 shows, no hair information was available (residual
facial hair was masked out)

The database of stimuli was then presented one image

Fig. 5. Typical stimuli used in the experiments of human gender
classification

after another on a computer screen and the subject was
asked to press M for male and F for female without any
time constraint. The results were surprinsing. An average
score of 90% correct classification (on 17 subjects some of
which familiar with a large subset of the people represented
in the database). Classification performance was not im-
paired by the lack of familiarity with the database people.
Informal chat with some of the subjects revealed that, at
least consciously, eyebrow information was considered to
be the most discriminating.

Note that no hair information has been used, both in our
human and our computer gender classification experiments.
This must be considered if these results are to be compared
with other experiments reported in literature (see for ex-
ample [6], where images included limited hair information).

3. CONCLUSION

Gender classification has been attempted using two com-
peting HyperBF networks trained on a geometrical descrip-
tion of (fe)males faces. The resulting performance was of
79% correct classification (averaged on males and females)
and must be confronted to a human performance of 90%.
Analysis of the internal representation of the HyperBF net-
works shows that the networks have been able to effec-
tively prototype (fe)male faces and that classification was
achieved using a subset of the available features, similar to
human strategies of gender classification.

REFERENCES

[1] R.J. Baron. Mechanisms of human facial recognition. Inter-
national Journal of Man Machine Studies, 15:137-178, 1981.

[2] H. Bourlard and Y. Kamp. Auto-association by multilayer per-
ceptrons and singular value decomposition. Biological Cyber-
netics, 59(4/5):291-294, 1988.

[3] R. Brunelli and T. Poggio. Face Recognition: Features versus
Templates. Technical Report 9110-04, I.R.S. T, 1991. to appear
on IEEE Trans. on PAMI.

[4] G. Cottrell and M. Fleming. Face recognition using unsuper-
vised feature extraction. In Proceedings of the International
Neural Network Conference, 1990.

[5] I. Craw, H. Ellis, and J.R. Lishman. Automatic extraction of
face features. Pattern Recognition Letters, 5:183—-187, Feb. 87.

[6] B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski. Sexnet:
A neural network identifies sex from human faces. In Advances
in Neural Information Processing Systems 3, pages 572-577,
1991.

[7] T.Kanade. Picture processing by computer complex and recog-
nition of human faces. Technical report, Kyoto University,
Dept. of Information Science, 1973.

[8] M. Kirby and L. Sirovich. Application of the Karhunen-Loeve
procedure for the characterization of human faces. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
12(1):103-108, 1990.

313



[9] C. A. Micchelli. Interpolation of scattered data: Distance ma-
trices and conditionally positive definite functions. Constr. Ap-
proxz, 2:11-22  1986.

[10] T. Poggio and F. Girosi. A theory of networks for approxima-
tion and learning. A.I. Memo No. 1140, Massachusetts Institute
of Technology, 1989.

[11] T. Poggio and F. Girosi. Networks for Approximation and
Learning. In Proc. of the IEEE, Vol. 78, pages 1481-1497,
1990.

[12] J. Sergent. Structural processing of faces. In A.W. Young and
H.D. Ellis, editors, Handbook of Research on Face Processing.
North-Holland, Amsterdam, 1989.

[13] M. Turk and A. Pentland. Eigenfaces for recognition. Technical
Report 154, MIT Media Lab Vision and Modeling Group, 1990.

314



