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Abstract The paper presents a simulated mobile system that learns to solve the ego-
location task in a known environment, in a supervised way, using a very low
resolution sampling of the optical array and RBF approximation techniques. The
impact of the number of sensors, of their layout, in particular of Sobol sequences
with respect to regular grids for a progressively refined sampling of images, and
of the complexity of response of each sensing unit has been investigated in an
attempt to simplify as much as possible the architecture of the image processing
module retaining good localization ability.

Keywords: Appearance based recognition, statistical object representation, machine learn-
ing, radial basis function networks, graphical simulator.

1. Introduction

The investigation of simple architectures capable of visual competence holds
promise of further insight into the fundamental mechanisms underlying animal
perception. It is from this perspective that the problem of associating a view
of a known environment to the position of the observer and its gaze direc-
tion has been approached. The specific variation of the task analyzed requires
the development of a vision processing module for museum environments (see
Figure 1) capable of understanding which area of a painting the user is target-
ing the camera at, in order to provide contextualized information to the visitor.
The proposed solution is based on the learning-by-example paradigm: sev-
eral images, annotated with the required parameters are fed to the system that
learns the appropriate mapping from them to painting coordinates. The results
obtained on image sampling and learning architectures can be generalized to
the development of image retrieval systems. Specifically, more compact image
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Figure 1. A wide angle view of the simulated environment where experiments are performed
(left) and the four degrees of freedom of the observing camera (horizontal motion in a fixed
height plane and bidimensional pointing without roll at the painting).

signatures can be devised which prove useful for very large databases applica-
tions. The organization of the paper follows a three stage workflow presenting
the imaging, the sensing, and the learning processes, along which data are
generated, gathered and interpreted by the system developed. Conclusions and
future work are covered in the final section.

2. The imaging process

A major problem in the development of systems based on learning is the
availability of a sufficient number of training examples. In order to gather
enough data to support the exploration of different learning architectures and
different sensing strategies, a flexible graphical engine has been realized fol-
lowing the ideas proposed in Bertamini et al., 2003. The tool supports the ef-
ficient simulation of several characteristics of real optical systems (distortion,
vignetting, digital artifacts, limited resolution and focusing ability) relying on
a set of post-processing functions acting on a synthetic image generated by
a 3D rendering system. Distortion curves and vignetting profiles are used to
build deformation maps and compositing masks speeding up the image gener-
ation process. Depth of fields effects are realized efficiently by spreading the
value of each pixel over its corresponding circle of confusion whose diameter
depends on lens focal length, aperture and point distance, the latter available
with no additional computational cost from the ray tracing system employed.
The simulation of the depth of field effects is important in the task considered
as the related blurring, being depth dependent, could be exploited for ego lo-
cation by the observing system. The implementation of digital mosaicking and
color quantization effects enables the simulation of low quality digital sensors
of the kind expected on cheap palmtop cameras. All the effects can be turned
on/off for the images generated by the graphical simulator, providing data of
different quality to test the sensitivity of the vision algorithms developed.
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3. The sensing process

Visual hyperacuity, the perception of a difference in the relative spatial lo-
calization of visual stimuli with a precision exceeding the characteristic size
of the sensors, is a task dependent ability improvable by training. It has been
demonstrated in Snippe and Koenderink, 1992, that population coding of spa-
tial signals, sampled by units with overlapping fields, supports hyperacuity per-
formance. Based on the insight of Poggio et al., 1992, and the ideas of Schiele
and Crowley, 2000, an artificial visual system has been realized sampling the
incoming optical array through a set of receptive field histograms describing
the local distribution of several image features. Large receptive fields are more
likely to overlap across different snapshots of the world, possibly supporting
increased performance of the ego location system via a mechanism similar
to the one underlying hyperacuity. However, maximizing the size of the re-
ceptive fields by letting them cover the whole image may be less convenient
than sampling multiple, smaller areas as in the latter case the image process-
ing module could be trained by blinding specific sensors subsets to cope with
occlusions. Each image signature would then become more discriminative in-
cluding spatial information into the overall statistical description provided by
the histograms. Furthermore, image normalization via histogram equalization
to cope with variation of light intensity and color would make single luminance
(or color channel) histogram meaningless. Three different image features have
been considered: hue weighted by saturation and the energies of the first and
second derivatives of image luminance convolved with a regularizing Gaussian
kernel. Two different sensor responses have been computed: the integral of the
sensed quantity over the receptive field, and a vector-like output, represented
by an 8 bin histogram. The detailed response of the differential operators is
given by the integrated response along different directions, describing the lo-
cal edge structure following Freeman and Adelson, 1991. Two sensor layouts
have then been compared: a grid structure with no overlapping and a random
sequence of overlapping sensors whose positions are derived from a Sobol
pseudo random sequence as presented by Press et al., 1992, whose points max-
imally avoid each other. Retinas with different sensor overlapping have been
generated by varying d
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where i is the position of the sensor in the sequence and s its normalized size
(see Figure 2). The value d = 0.5 corresponds to the half side of a square
sensor covering 1/i-th of the imaged area, while d = 0.25(0.75) correspond to
a slower (faster) decay of size within the sequence, resulting in increased (de-
creased) overlapping of the receptive fields. Progressive reduction of sensor
fields is well matched to the characteristic of the Sobol sequence, providing
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Figure 2. Regular grid and progressive resolution sensors with a Sobol layout (left) with
different size decay curves (right).

an effective coarse to fine sampling strategy upon which more sophisticated
sensor polling strategies could be based. Training data have been generated by
the developed graphical simulator: 10000 low resolution, distorted, vignetted,
digitally sampled images (using a Bayer sensor mosaic) with depth of field
at a typical lens fstop (5.6), fixed focusing distance (2m) as well as autofo-
cusing. Camera positions and target directions have been chosen following a
4-dimensional Sobol sequence progressively sampling the two colored rectan-
gles in Figure 1. The unit of the spatial values reported in the plots is 1m.

4. The learning process

Regularization Networks, introduced by Poggio and Girosi, 1990, are a tool
for multivariate function approximation and include as a special case Radial
Basis Functions networks. A scalar function can be approximated from a
sparse set of points {(xi, yi)}i=1,...,N , by an expansion in radial functions:

F (x) =
K

∑

α=1

cαg(‖ x − tα ‖W ) (2)

with {tα} a proper subset of the available data, the expansion centers, W

defining the metrics, x a vector obtained by concatenation of the available
histograms and y the position and gaze of the observer. The computation of
{cα} corresponds to a least-square estimation problem:

c = G+y (3)

where Gij = g(‖ xi − xj ‖) and G+ is the Moore-Penrose pseudo inverse
G+ = (GT G)−1GT whose dimension is fixed by the number of centers K.
Several choices are available for g, the Gaussian and the multiquadric being
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Figure 3. Average error over the 6 coordinates of the observer for a Gaussian RBF network
with varying number of centers and of sensors. Good performance can be obtained with as few
as 12 sensors and 400 centers (examples) even when using averaged sensor responses.

among the most popular, with the former being chosen for the present experi-
ments due to the similarity of its localized support to the properties of receptive
fields. The choice of W is important as it defines the overlapping of the net-
work units, represented by the Gaussian functions centered at the expansion
centers tα. Good results have been obtained by choosing Wij = δij/dM ,
where dM represents the maximum cluster radius obtained when setting the
expansion centers by clustering. Hyperacuity-like advantages are expected to
derive from the joint action of large receptive fields of the histograms, provid-
ing data changing slowly with the position of the observer and sustained re-
sponse of the network units due to small values of W . The resulting networks
exhibit good performance even with integral sensor responses (Figure 3). No
advantages have been found for fixed focus sensing over autofocusing. The
experimental results show a convincing advantage of overlapping Sobol lay-
outs with respect to a non overlapping grid structure (Figure 4), favoring large
receptive fields.

5. Conclusions

Artificial retinas built from largely overlapping sensors responsive to differ-
ent local visual features have been proved to be an economical yet rich enough
representation for solving the ego location problem in a known environment.
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Figure 4 Average error over
the 6 coordinates of the ob-
server for Gaussian RBF net-
works with 400 centers, 24
sensors and different inputs.
Note the significant advantage
of the proposed Sobol sam-
pling.

The impact of the number of sensors, of their layout and complexity of re-
sponse has been investigated in an attempt to simplify as much as possible the
architecture of the image processing module. The use of Sobol sequences for a
progressively refined sampling of images can be of wider interest, being appli-
cable to the development of more efficient search strategies in image retrieval
applications based on the query-by-example paradigm such as those mentioned
in Brunelli and Mich, 2000. Future work will extended the results obtained so
far using different learning techniques (e.g. Support Vector Machines), differ-
ent feature sets targeted at gray level images and occlusion management by
training several modules for specific occlusion patterns.
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