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Abstract— A method for histogram partitioning based on
the maximization of a criterium function is proposed. The
choice of the criterium can be made using a priori informa-
tion to mimic human performance as far as possible.
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1. INTRODUCTION

The analysis of one dimensional data is a common task in
image processing. Image segmentation through slicing of the
histogram of intensity level frequencies or through the analy-
sis of projections is a familiar situation to everyone working in
computer vision. The qualitative analysis of this type of data
is only deceivingly simple, and reproduction of human perfor-
mance proves to be hard. The key point seems to be the abil-
ity to pick up a good partition out of a very large number of
possible candidates. The number of possible partitions is usu-
ally exponential in the number of characteristic points (local
extrema in the data). The criterium function (a formal defini-
tion of goodness) to be maximized is defined on a discrete space
(all possible partitions identified by the characteristic points)
and the problem becomes one of combinatorial optimization.
Smoothing techniques can be used to simplify data analysis be
reducing the search space but even if tunable (see for example
[7] for adaptive smoothing) they are difficult to control in order
to reproduce human performance.

A different strategy can be adopted when the modality of
data is known. The distribution of values can then be fitted
by the superposition of an appropriate number of functions,
which are usually taken to be gaussian ([8]). The same approach
is used in the more general field of functional approximation,
where the use of radial functions - of which gaussians are but a
single example - is widespread ([10]). Snyder et al. ([9]) have
successfully applied tree annealing, a generalization of simulated
annealing, to the least-square fit of multimodal histograms by
a linear combination of gaussian functions.

The approach proposed in this note, while also based on sim-
ulated annealing, moves from a different strategy. The main
point is the introduction of a goodness criterion characterizing
the shape of a histogram slice (the data between any two local
minima). The histogram is then partitioned so as to maximize
the sum of its slice scores. No commitment is made on the
number of slices, even if a-priori knowledge can be easily incor-
porated, as will be shown.

After a brief review of simulated annealing techniques, the
segmentation task is formally described with the introduction of
a criterium function and the algorithm for simulated annealing
is presented. Some results are reported.

2. SIMULATED ANNEALING

A large class of problems require the minimization (maxi-
mization) of a function. More formally, let F(z) be a function
where T represents a set of variables (parameters). We seek the

value Zo that minimizes F(z):
F(z0) < F(z),Vz € X (1)

where X represents the space of possible values for z (configu-
rations). Sometimes Z varies continuosly: analytic techniques,
such as gradient descent, can be employed (but see also [9]
where the technique of tree annealing is applied to continuous
minimization). Often z can assume only discrete values: the
problem becomes one of combinatorial optimization. An exam-
ple is given by the Ising model: a lattice of magnetic dipoles
with only two possible (anti-parallel) orientations. The state of
the system is represented by a vector whose dimension equals
the number of dipoles and whose components only assume the
values —1, 1. The most used heuristics in the solution of op-
timization problems is that of iterative refinement: a possible
solution is initially guessed and the space of neighbor config-
urations is explored looking for configuration at lower energy.
This strategy (like gradient descent) is severely afflicted by the
problem of local minima. Simulated annealing ([1], [3], [4]) owes
its name to the process of annealing, by which a solid can be
driven into a low energy state (usually a crystal lattice). The
solid is initially heated to a temperature where many atomic re-
arrangements are possible. A cooling schedule is then activated,
progressively reducing the possibility of atomic rearrangements:
the solid freezes into a low energy state. Cooling must be very
slow, allowing the system to attain thermal equilibrium at each
temperature. An analogy can be established through the low
energy state of a configuration of atoms and the minimum cost
configuration Zo. If we can introduce a temperature, the anal-
ogy can be transformed into a procedure for combinatorial op-
timization. The main difference between simulated annealing
and iterative refinement is that the former allows the system
to visit configurations whose energy is higher than that of the
actual configuration. The transition from configuration Z of en-
ergy Eo to a configuration z’ with energy E; is always accepted
if £1 < Ey. If By > Ey, a random number 5, uniformly dis-
tributed in the interval [0, 1], is generated and the new transition
is accepted if n < e (B1—Eo)/T 1y apply simulated annealing
we must define:

o the form of the energy function;

o the configuration space of the system;

o the transformations between configurations (generation
mechanism);

o the analogue of temperature;

¢ a cooling schedule.

At each temperature the system tries a given number of con-
figurations and accepts a transition using the Boltzmann rule.
The algorithm stops when the system is frozen: the temperature
is so low that the system cannot visit any higher energy state
and there are no lower energy states to jump to with the allowed
transformations (a review of necessary and sufficient conditions
for asymptotic convergence can be found in [1], [2]).



3. HISTOGRAM SEGMENTATION

The histogram of an intensity image is defined as the distri-
bution of the frequencies of the intensity values ([6]). To such a
frequency distribution we can associate a list of nodes, each node
representing a local minimum (valley) and the right adjacent lo-
cal maximum (peak). Each node carries some information such
as:

¢ histogram value at the valley and peak,

o value of the cumulative distribution at both points,

o active/inactive flag.

The configuration space we consider is given by all possible con-
figurations of the flags. The number N of possible configurations
is given by

N=2" (2)

where n represents the number of valleys in the given histogram.
The number of configurations is then exponential in the number
of input data. A generation mechanism defines a neighborhood
6 for each configuration ¢, consisting of all configurations which
can be reached from ¢ in one transition. In the reported imple-
mentation a new configuration is generated by flipping a random
number of node flags with equal probability: the flag value is
changed from active to inactive or viceversa, thereby deactivat-
ing (activating) the corresponding valley as a slice limit. Let 6,
denote the neighborhood obtained by flipping n node flags with
7n an integer random variable uniformly distributed in [1, n]. For
each configuration we need an energy function E(c) which rep-
resents the cost we want to minimize. This corresponds to the
maximization of —F(c) which can be interpreted as the goodness
of the configuration. The energy function used in the reported
experiments has the following form:

Ee) = —Emm“’s ‘; pe — 1)) (1 = pAw) (3)

where the sum is extended over the slices s of the current con-
figuration ¢, A, represents the area of the slice, w, its width,
ps the maximum histogram value in the slice, and I; and r, the
values at the left and right delimiting valleys respectively (for a
similar function see [5]). The first factor of each term in the sum
reflects how deep the uppermost of the two delimiting valleys is,
relative to the peak height; the second term takes into account
how deep the other valley is (see Fig. 1). Other functions can
be written depending on the particular slicing needs.

Suppose the number of peaks, say m, is known. This a-priori
knowledge can be easily incorporated into the definition of the
energy function:

E(c)

alns —m|+1

E'(c) = (4)
where n. is the number of slices in the given configuration and
o 1s used to weight the contribution of this new factor. The new
energy function £’ reduces to E for those configuration having
ns = m. As will be shown in the next section, the use of a-prior:
knowledge (such as the modality of data) proves very effective
in improving the performance of the algorithm.

4. RESULTS

The algorithm has been tested on several real images. As an
example, the performance is discussed here with reference to the
image shown in Fig. 2. It is well known that the cooling sched-
ule and the generation mechanism may noticeably affect the
performance of simulated annealing (see [1]). In order to assess
the potential of the algorithm, two different cooling schedules

Fig. 1.

Histogram values used in the score function.

and two different generation mechanisms have been compared.
The initial temperature Tp is chosen so that 95% of the gener-
ated transitions are accepted. The first cooling schedule C1 is
a fixed (fractional) decrement annealing ([3], [4]):

Trt1 = 0.9T, (5)

where 7, is the temperature at the n-th annealing step. The
alternative cooling schedule C2 is defined by:

Tn+1 = Tnfi(_;”_T;) (6)

where o, represent the standard deviation of energy at tem-
perature 75, ([11]). The number of configurations generated
at each temperature was held fixed for both cooling schedules
and set equal to 10000. The annealing stops when the sys-
tems freezes (i.e. no accepted transitions are generated). The
evolution of energy as a function of temperature for the fixed
fractional decrement annealing can be seen in Fig. 4. Schedule
C2 proves to be more efficient, exhibiting the same evolution of
the average energy as a function of temperature but exploring
less configurations using a faster cooling as can be seen from
Fig. 5.

The performance of the algorithm using different generation
mechanisms was also tested. The annealing of the system for
two different neighborhoods é2 and 610 (using the C2 cooling
schedule) is reported in Fig. 5. The use of a greater neigh-
borhood allows the system to cool faster at high temperatures
thereby reducing the number of tested configurations. Finally
the annealing obtained using the proposed energy functions F
and E', with @ = 1.0,m = 4, is compared (see Fig. 6). The use
of the biased energy E’ rapidly focus the system on the config-
urations with the required number of slices (see Fig. 7) which
are near optimal.

The original histogram has 31 local minima (see Fig.3), giving
a quite large configuration space (2*! possible configurations).
The final histogram configuration (all of the experiments ended
up with the same partition) has only four slices as can be seen
in Fig. 8. The resulting segmentation is shown in Fig.9. The
algorithm (using the C2 cooling schedule and the 810 neighbor-
hood) explored only 7.0 x 107°% of the total configuration space
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through histogram slicing, where an exhaustive search of the
configuration space is very demanding except for the simplest Fig. 5.
problems. The possibility of defining energy functions reflecting

Energy as a function of the number of generated configura-

tions for different cooling schedules (C'1 and C2) and for different
neighborhood sizes (D2 and D10 correspond to neighborhoods 6

the apriori knowledge of the problem is useful to obtain results and 610).

that match human performance in the given task and to speed
up the annealing cycle.
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Fig. 9. Histogram based segmentation.
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