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Abstract— A non-deterministic minimization algorithm
recently proposed is analyzed. Some characteristics are
analytically derived from the analysis of positive definite
quadratic forms. An improvement is proposed and com-
pared with the basic algorithm. Different variants of the
basic algorithm are finally compared to a standard Conju-
gate Gradient minimization algorithm in the computation
of the Rayleigh coefficient of a positive definite symmetric
matrix.

1. INTRODUCTION

Function minimization is a widespread need in the scientific
community. The major shortcoming of the most used minimiza-
tion algorithms is the sensitivity to local minima. Deterministic
methods, which are guaranteed to get the global minima (like
those based on interval analysis, see [7]), have a complexity
which is exponential in the dimension of the domain, making
them often unusable. Methods like simulated annealing promise
a reduced sensitivity (see [2], [3]) to local minima but their suc-
cess depends on the choice of an appropriate annealing schedule.
The adaptive non-deterministic algorithm recently proposed by
Caprile and Girosi([5]) couples good immunity to local minima
to simplicity.

The first section of the paper gives a brief review of the
Caprile-Girosi algorithm. The mathematical analysis of algo-
rithm performance for quadratic forms is then discussed. The
next section introduces an improvement and the correspond-
ing analysis. Finally, several variants of the basic algorithm
are compared in the computation of the Rayleigh coefficient of
symmetric positive definite quadratic forms.

2. THE CAPRILE-GIROSI ALGORITHM

Let us briefly review the non-deterministic algorithm recently
proposed by Girosi and Caprile ([5]). The algorithm is charac-
terized by a random search whose scope is limited by an adap-
tive hyper-ellipsoid. The domain of the function is decomposed
as the cartesian product of n linear subspaces and the num-
ber of independently adaptive ellipsoid axes corresponds to the
cardinality of the partition. The current minimum estimate is
considered the sum of n vectors, one for each of the partitions.
Each of these components is modified in turn by the addition of
a random vector whose components (in the standard orthonor-
mal base of the given subspace) have a magnitude limited by the
corresponding hyper-ellipsoid semi-axis. If the function value at
the new minimum candidate is lower than the value at the cur-
rent point, the searching point (the probe) is moved and the cor-
responding ellipsoid axis is doubled. Should this not be the case
the probe is not moved and the corresponding hyper-ellipsoid
axis is halved. The algorithm restarts itself automatically when
the ellipsoid axes become smaller than a given threshold by mov-
ing the probe in a new randomly chosen point. The algorithm
has two remarkable properties:

e it is not necessary for the function to be minimized to have
a known analytical form;
o straightforward implementation;

o convergence to the absolute minimum on a compact set
with probability 1'. While the convergence to the absolute
minimum is mainly of theoretical interest (it is assured
in the limit of the number of moves going to infinity) it
makes the algorithm more insensitive to the presence of
local minima.

3. MATHEMATICAL ANALYSIS

While it cannot be assumed that the function to be mini-
mized is a quadratic form, it is a reasonable assumption that its
shape near a minimum resembles an elliptical paraboloid. The
efficiency with which the algorithm converges to the minimum
of a quadratic form is therefore relevant as the higher the effi-
ciency the sooner the algorithm can explore another area of the
search space. What’s more, the more accurate the convergence
to the minimum (given the restarting thresholds) the more reli-
able the comparison between the values of the local minima to
get the global minimum.

Let us consider a positive definite, quadratic form A so that

Ker{(-, A-)} = {0} (1)

(Xo,AXo) > 0, Vxo € Rn, Xo # (0] (2)

where (-,- ) represents the usual inner product in R"™ and O

is the null element of R™. Let x € R™ be a random variable,

uniformly distributed in the n-dimensional sphere of radius 75

(Sy). Let x¢ be the starting point. We want to compute the

probability of moving from the starting point into a point at
which the quadratic form assumes a lower value:

Pl(%0 + %, A(x0 + %)) < (x0, Ax0)] = V%(ﬂ)/ v, (3)

where the domain D is defined by the following equations:

(%0 + x, A(x0 + %))

(x,%)

S (Xo, AX())

<

and dV; is short-hand for the volume element dzq dz> - - dz,,.
V7™(n) represents the measure of the n-dimensional sphere and
is given by the following expression:

Vo) = 7D/ (1/2)
=TTz + 1)
From the hypothesis on A we can find an orthonormal coordi-

nate transformation taking A to its metric normal form (sum
of squares)

. UTU =1, UTAU = D, Dij =dibij, di >0 (5)

7" (4)

6 being the Kronecker symbol. The probability P can be rewrit-
ten as:
Pl(x0 + x, A(x0 + x)) < (%0, AX0)] = oz/ dVy (6)
vEF

I Thereis always a non null probability to effect arbitrarly long jumps: it
is possible to have a sufficiently long sequence of successful moves making
the ellipsoid grow to encapsulate the compact domain of the function and
enabling the probe to explore it completely



where:

D = UTAU (7)
Vo _ \/EUTXO (8)
(Xo, AXo)

(Vo,Vo) = 1 (9)
D, = |[—L__— 10
(Xo, AX()) ( )
W = (xo Ax)"? (11)

V7 (n)y/det(A)
F = {veR"|(v,v) <1 (12)

(v —vg, Dyt (v—vg)) <1}

The probability P is then given by the quantity o times the
volume of the intersection of the n-dimensional sphere of radius
N
center lying on the boundary of the sphere (see Fig.1). The
semi-axes of the ellipsoid are proportional to 5. This implies, in
the limit » — 0, that the intersection volume approaches half

the ellipsoid volume from below and then:

1 and the hyper-ellipsoid whose semi-axes are and

71]1210 Pl(xo0 + x, A(x0 + %)) < (%0, A%0)] = % (13)

From the following inequality

[Lws]
VEF vVesn(1)

L (o o)™
2’ 7y /det(A)

Equation 15 points out a possible weakness of the algorithm: P
can be dramatically affected by even small variations of 5 if the
domain dimensionality is high (e.g. if n — 27 ,as proposed in
[5], P may be reduced by a factor as high as 2").

When the minimum semi-axis of the ellipsoid is equal to or
greater than the sphere diameter, the whole sphere is inside the
ellipsoid. This implies that the intersection volume is given by
the sphere volume and the probability P is given by:

P can bound:

P < min

(15)

(Xo, AXo)n/2

7/ det(A)

Pl(x0 + x, A(xo + x)) < (x0, Axq)] =

when

(Xo y AXo)

n22 7 (17)

where d represents the minimum eigenvalue of A:

d= min {d;}
J=1,...,n
We also have
A
P(n =2 @mdmh: L S%; (18)

Fig. 1. The shaded area corresponds to a region of lower values of

the quadratic form

Fig. 2. The shaded area represent the region where the double shot

strategy is unsuccessful

Fig. 3. The black area represents a region of lower function values
while the dot filled one represents the region where the double
shot strategy is unsuccessful
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Fig. 4. The integration domain /; representing the points where the
probe can move and lower the function value
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Fig. 5. The geometrical elements used in the computation of the
spherical segment heights

4. DOUBLE SHOT: AN IMPROVEMENT

Can we derive any information from the failure of a guess?
We will demonstrate this to be the case. In fact, if x + x¢ is an
unsuccessful guess, we shall show that the probability of failing

a new guess, given as X — Xg, goes to 0 when 5 — 0. The
probability of such an event is given by:
A n/2
Plixo + %, A(xo £ %)) > (x0, Axo )] = X0 AX0) dv,

Vi (n)\/det(A) Ji

where the integration domain I (see Fig.2) is defined by:

(19)

(v,v) > 1 (20)
(v—2vo,v—2vg) > 1 (21)
(v—vo,Dy'(v—vo)) < 1 (22)
We will show that:
n/2
lim (xo, Axo) dv, =0 (23)
n—

Vr(n)y/det(A) Jr

The starting point is the observation that the ellipsoid volume
is bounded from above and below by the spheres whose radii
equal the maximum and minimum semi-axis respectively and
then the limit in Eq. 23 is upper and lower bounded by the
same limit when [ refers to the n-sphere with radius equal to the
biggest (smallest) semi-axis (which we recall to be proportional

to ).

We can then assume the ellipsoid to be a sphere of radius
d (see Fig.3). The symmetry of the integration allows us to
express the integral we are interested in as:

/dv,, :V(")(d)—z/ v,
I I

The computation of volume I; reduces to the computation of
the volume of two spherical segments (see Fig.4) whose heights
are given by (see Fig.5):

(24)

H = § (25)
h = d—H (26)

The volume of an n-dimensional spherical segment is:

/(ﬁ—f)(”—l)/%u (27)
r—h

n=1)/2

C(n)(h, r) = w
2

It can be shown ? that the following expansions hold in the limit
of d — 0:

d 1 n+1
INEINEE!
/ (d2 _t2)('n—l)/2dt — (2)n( 2 )d'n _ (28)
d—h 2F(5 + 1)
d(nt+1) "
— +0(d™)
1
dn+1
1— )= D72 o(d"t? 29
[ a-e I rouy @)

The volume of I in the limit of small d is then:

(n—1)/2
W= E (1= =)t o)
I F(5+1) n+1

and this implies that:

(30)

(Xo, AXo)n/2
Vr(n)y/det(A) J1

This is an improvement because the probability of two sequen-
tial unsuccessful tests goes to zero for small  while in the origi-
nal algorithm it is lower bounded by 1/4 regardless of the value
of 7.

lim dV, =0
—0

n

(31)

2Using standard results on the hypergeometric function we have:

L 2 gy - DA/DT(n 4 1/2)
o - 2T(n/2+ 1)

while the binomial series allows us to write:

/e H H\? d
_ p2(n=1)72 4, _ _ad 3
/0 (1-a?) dx_d+0(<—d))_2+0(d)

and
1 H
/ (1- tz)("_l)/th — 2(n—l)/2/ [o(1 - g)](n—l)/Q
1-H 0
o(n+1)/2

— mH("‘Fl)/Q + O(H("+3)/2)
g(nt1)

_ (n+3)

= Gaptod )




The structure of the algorithm suggests several variations on

the basic theme:

o fixed or telescoping partitions: the simplest form is to con-
sider a sphere whose radius is adaptively modified (BATCH
mode). Another possibility is to consider each variable sep-
arately (the cardinality of the partition corresponds to the
dimensionality of the domain: SINGLE mode). A more so-
phisticated scheme (see [5]) uses a variable partition whose
cardinality is increased at each successive restart.

o asymmetric growing/shrinking of the ellipsoid;

« random perturbations in a spherical shell (the probe is then
biased to move near the boundary of the noise ellipsoid
thereby improving the convergence rate).

All of these variations will be compared experimentally in the
next section.

5. EXPERIMENTAL RESULTS

It is natural to ask how well random minimization can per-
form whenever a not strictly quadratic form must be minimized.
A typical benchmark for minimization routines is the computa-
tion of the Rayleigh coefficient p of a positive definite quadratic
form A (corresponding to its minimum eigenvalue):

p= m}%n R(x) (32)
where -
X" Ax .
R(x)= 2 A (33)

The experiments we report compare the performance of Con-
jugate Gradient (see [6]) minimization with several variations
of the random minimization scheme (with and without dou-
ble shot). The different algorithms are compared varying the
dimension of the space and the ratio of the maximum and min-
imum eigenvalues which affects the speed of convergence of the
conjugate gradient algorithm (see [1]). All of the experiments
were done using C-language code on a SunSPARCstationl. The
clock ticks used in the comparison of the algorithms are the com-
putations of R and of VR, both of complexity O(n?) with n the
dimensionality of the domain. A single evaluation of R in R'°°
took about 17 msec resulting in a maximum execution time of
approximately 90 secs.

As we could expect from the previous analysis, the perfor-
mance of the random minimization routine is better at low di-
mensionality and with a small ratio of the extremal eigenvalues.

The most remarkable effect is that of the double shot: try-
ing the reverse of the unsuccessful perturbation dramatically
increases the performance of all of the compared schemes at all
dimensionalities and eigenvalue ratios.

The use of asymmetric growing/shrinking and the delimita-
tion of the search to a spherical shell has a negative effect on
the performance of the BATCH mode. The use of asymmetric
growing/shrinking has no major effect on the SINGLE mode
which, however, benefits from the limitation of the search to a
spherical shell. The global trends at the explored dimensional-
ities (n = 10, 50,100) and at the different ratio of the extremal
eigenvalues (R = 10,100, 1000) is, in order of decreasing perfor-
mance:

o Conjugate Gradient;

o symmetric, shell limited, double shot SINGLE mode;

¢ symmetric, double shot BATCH mode;

The SINGLE mode variants perform consistently better than
the BATCH mode schemes with the single exception of the runs
at the higher dimensionality with the smallest extremal eigen-
values ratio. While the performance of the Conjugate Gradient

Algorithm is always superior, the improved random algorithm
performs nearly as well at low dimensionalities (for some ex-
amples see Figures 6 through 9 where abscissas represent the
number of function (gradient) evaluations while ordinatas repre-
sent the logarithm of the absolute difference from the minimum
eigenvalue).

n=10,R=10
Y

Conj. Grad.
Batch+DS ™
A Single+Shell ™~
I I Single+Shdl+DS ~
X x 103

0.00 1.00 2.00 3.00 4.00

Fig. 6. Comparison between the different minimization schemes
at different dimensionality n and different eigenvalue ratio R
(Aar/Am). (DS stands for double shot while Shell means shell
limited noise. Average data on several runs with different start-
ing points are reported.)

6. CONCLUSIONS

Some characteristics of a recently proposed non deterministic
minimization algorithm have been analytically derived. A sim-
ple yet very effective variant has been proposed and its better
performance analitically justified. Several variants of the same
basic algorithm have been experimentally compared to a Con-
jugate Gradient approach in the computation of the Rayleigh
coefficient of a positive definite quadratic form. The Caprile-
Girosi algorithm has also been succesfully applied to the approx-
imation of functions using an expansion in radial basis functions
(see [8], [5], [9]) and should prove effective in training standard
feedforward neural networks (for a similar approach see [4]).
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Fig. 8. n =10, Ap/Am = 1000



