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Abstract— This paper analyzes the use of histograms of
low level image features, such as color and luminance, as
descriptors for image retrieval purposes. A novel definition
of histogram capacity curve taking into account the density
distribution of histograms in the corresponding spaces is
proposed and used to quantify the effectiveness of image
descriptors and histogram dissimilarities in image retrieval
applications. The results permit the design of scalable image
retrieval systems which make optimal use of computational
and storage resources.
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1. INTRODUCTION

A currently active line of research and development in
the Computer Vision community is the design and devel-
opment of efficient tools for accessing multimedia material,
such as video and still images, using their media specific
features. In particular, several research papers and tools
have been presented for image retrieval based on low level
visual features, such as color and luminance, as image de-
scriptors ([3], [5], [6], [7], [8], [9], [10], [15], [16], [17], [19],
[221).

This paper considers how an efficient and effective sys-
tem for image retrieval can be based on the statistics of
such low level features. A novel definition of histogram ca-
pacity curve taking into account the density distribution
of histograms in the corresponding spaces is proposed and
used to quantify the effectiveness of image descriptors and
histogram dissimilarities in image retrieval applications.

In the light of this definition, the following problems have
been considered:

« how descriptor effectiveness should be assessed,

o how histograms should be compared,

« how many bins are necessary,

e how the low level features should be mapped before

being used to compute the corresponding histograms,

« the effect of the introduction of spatial information by

using multiple regions of interest.
The results of histograms analysis can be used for the de-
velopment of an efficient image retrieval system that min-
imizes the size of the image descriptors while maintaining
good discriminating ability. The next section discusses how
images can be described by the probability distributions of
low level features. The notion of histogram capacity, upon
which all the analyses performed in this paper are based,
is then introduced. Methods for the comparison of his-

tograms and for choosing the number of bins are presented
and discussed in the two following sections. Finally, some
applications are considered and the last section of the paper
summarizes the results.

2. HISTOGRAM CAPACITY

Digital images are usually represented as a set of ele-
ments, called pixels, arranged in a regular structure, e.g. a
square grid. A small set of numbers is associated to each
pixel (its luminance, color components, etc). It is then
possible to represent a digital image Z with the following
notation:

(1)

where S represents the set of possible pixel locations and
V the set of values associated to the pixel locations. By
quantizing S and V, a multivariate frequency distribution
can be derived from the population data (i.e. the pixels).
The resulting distribution can be represented by a multi-
dimensional histogram, giving for each of the cells of the
quantized spaces, the fraction of pixels whose description
falls within the cell. The data can be further summarized
by considering marginal distributions of the pixel descrip-
tors, that is, by integrating over some of the data dimen-
sions. Several commonly used descriptors are then easily
obtained:

« Global image histograms: they are obtained by inte-
gration over the spatial coordinates. All spatial infor-
mation is lost and only the population of V' is consid-
ered.

« Horizontal /vertical projections: only one of the spatial
coordinates is integrated over.

o Multiple region histograms: none of the spatial coor-
dinates are integrated over, but they are heavily quan-
tized (approaching the state of categorical data).

The resulting descriptors are density distributions that can
be compared for similarity using the values of the statistics
upon which common tests, such as the x2, are based. As
the densities are considered in a binned form (histograms),
vector distances, such as the Euclidean and the L; norms,
can also be used to quantify the similarity of two descrip-
tors as they are represented by numerical vectors.

Binned representations of the densities of low level im-

age features can be used in an image retrieval task to sort
the images stored in a database by decreasing similarity
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Dissimilarity measure dependence of capacity curves
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Fig. 1. The figure reports the capacity curves for several dissimilarity
measures. The curves are built by averaging the curves derived by
the three descriptors I, H, and E. Note how the L1 norm provides
the best results. All curves are computed on the VIDEO database.

| Dissimilarity measure | EvIiDED | EsTILLS |
Ly 41 50
Kuiper 39 48
Kolmogorov-Smirnov 34 42
Chi-square 27 36
FEuclidean 15 20

TABLE I
THE EFFECTIVENESS £ OF THE DIFFERENT DISSIMILARITY MEASURES
FOR THE TWO DATABASES VIDEO AND STILLS, SCALED SO THAT THE
MAXIMUM POSSIBLE VALUE CORRESPONDS TO 100. THE CAPACITY
CURVES ARE AVERAGED OVER THREE DESCRIPTORS: HUE, LUMINANCE,
AND EDGENESS.

with a query image. All the database images are indexed
by their descriptors histograms which are then used as ac-
cess keys. Let us assume, for the moment, that some de-
sign issues, such as histogram resolution and comparison,
have been solved (this issues are discussed at length in the
following sections). The notion of histogram capacity has
been introduced in [20] as a measure of the effectiveness of
histogram indexing in image retrieval tasks. The capacity
of an n-bins histogram space H is defined as the maximal
number of spheres with a given radius that can be packed
in the embedding R™ space so that the sphere centers lie
within . Starting from this definition, a new one can be
introduced that does not rely on the geometrical structure
of space H but takes into account the distribution of his-
tograms within it. This is particularly important as the
distribution of histograms within the space cannot be as-
sumed uniform. The following two definitions formalize the

Estimated required nr. of bins

\

h
'
h
[
'

'

'

'

!

0.10

o — Luminance
A--- Hue
+ - Edgeness

0.08
1

Frequency

0.06
!

0.04
!

]

'
'
'
'
'
'
I
'
'
'
|
|
'
'
'
i
|
'
'
'
'
'
'
'
'
|
|
I
I
A
i

0.02
!

/ 0 {
Il Tt
PR T

T T

0 20

0.00
1

40
Bins

Fig. 2. The curves report the distribution of the estimated required
number of bins for some of the descriptors used in the tests over
the VIDEO database according to Scott’s rule.

new notion of capacity:

Definition 1: Given an n-dimensional histogram space
‘H, a dissimilarity measure' d on H, the capacity curve C of
H is defined as the density distribution of the dissimilarity

between the two elements of all possible histogram couples
within H.

Definition 2: The capacity C(t) of an histogram space H
is given by

e(t) = / _ Cl)dy )
y>t

where C' is the capacity curve of ‘H with respect to a given
dissimilarity measure.

There are two major differences from the definition intro-
duced in [20]:

1. there is no need for a distance function: the triangu-
lar inequality of distances is not necessary for image
retrieval applications, and requiring it could be a lim-
iting factor in the design of a retrieval system;

2. the difficult task of estimating a 'maximal number’
has been transformed into the easier estimation of
an average value using the empirical capacity curve
computed by considering all image couples within the
database.

Histogram capacity curves provide a basis on which the
effectiveness, i.e. the discrimination ability, of different im-
age descriptors can be compared. The shape of C(t) is an
indicator of the distribution of histograms in H with the

!n this context, a dissimilarity measure is a bounded, positive, and
symmetric function defined over a subset of R™ x R".



topology induced by the selected comparison dissimilarity
measure. If the average value of dissimilarity is low, his-
tograms are not sparse enough in H and histogram index-
ing is not effective. This can be formalized by the following
definition:

Definition 3: The indexing effectiveness £ of an his-
togram space H is given by the average dissimilarity value:

€=/y0(y)dy (3)

The indexing effectiveness £ can be used to assess several
descriptor-dissimilarity combinations for image retrieval
applications.

3. HISTOGRAM COMPARISON

As histogram capacity depends on the dissimilarity mea-
sure d chosen for the comparison, it is useful to compare the
capacity over a given space H for different choices of d to
see which one gives the best indexing effectiveness. Binned
densities can be compared using statistical tests as well
as using vector norms. Non-parametric tests are required
as a-priori knowledge about the shape of the densities of
low level image descriptors is generally not available. Note
however that in an image comparison task we do not need
the significance associated to the test statistics, but only
the statistics values themselves, e.g. normalized to the in-
terval [0, 100], low values representing similar densities and
high values different ones. The following tests are consid-
ered in this paper:

o Chi-square: the x? test can be applied to binned

distributions P, ) and the corresponding statistic is:

P — Q:)*
2 P, — (’7’ 4
Q=550 (@
where subscript ¢ represents the bins.

« Kolmogorov-Smirnov: it is applicable to unbinned
(cumulative) distributions S(x), R(x) of a scalar vari-
able and is defined by the following statistic:

Dks(S, R) = |S(z) — R(z)] ()

max
—oo<T <0

An important characteristic of Dig is its invariance
to reparametrization of the variable . The test can
also be applied to binned distributions but the result-
ing statistic underestimates the true value. General-
izations of the Kolmogorov-Smirnov statistic to multi-
dimensional data exist but are much more computa-
tionally demanding (see [4]).

o Kuiper: it is applicable to unbinned distributions of
a scalar variable and it is based on a statistic similar
to the one used by the Kolmogorov-Smirnov test:

Dku(S,R) = _ max [S(z)— R(z)] +

—oo<xr <00

max [R(z) —S(z)]  (6)

—oo<xr <00

It can also be applied to binned distributions and

presents some advantages over the Kolmogorov-

Smirnov statistic: it is appropriate for circular data,

and it is more sensitive to the tails of the distributions.
Binned densities can be represented as vectors and their
difference can be quantified by any metric defined on the
corresponding vector spaces. A widely used family of met-
rics is the L, family defined by:

1/p
Ly(z,y) = (Z |zs — yi|p) , p2>1 (7)

Among the most used metrics we find the Euclidean norm
(L2) and the Manhattan norm (L;).

In order to assess the relative merits of the different dis-
similarity measures for image retrieval, some experiments
have been performed on two databases (VIDED and STILLS)
using the following low level image descriptors:

e hue, H: a scalar descriptor which associates to an
(r,g,b) triple representing the pixel color its tint; the
resulting density represents a circular variable;

e luminance, I: a scalar descriptor which associates to
an (r,g,b) triple representing the pixel color the nor-
malized sum of its components;

e edgeness, FE: the magnitude of the gradient

(0z1)2 + (0yI)? where I represents the image lumi-
nance;

o hue co-occurrence: space S is partitioned into couples
of pixels by means of a binary spatial relation: a pixel
located at (z,y) is associated to a pixel at (z+ Az, y+
Ay) and the tints of the two pixels are used as indices
in a 2-dimensional histogram;

o luminance co-occurrence: the same as hue co-
occurrence using pixel luminances.

The two image databases used for the computation of the

descriptors capacity curves present distinct characteristics:

« VIDED: a set of 40000 frames from nine different video
clips. Each video clip, approximately five minutes
long, was sampled at 25 frames per second. The video
material was varied, ranging from comics, news, to
documentaries and action movies. This database is
important for two reasons:

— it covers a wide variety of images over which image
searches could be useful (e.g. for video on demand
systems, news production, etc);

— for each given image (frame) it provides a set of sim-
ilar images, the neighboring frames: this is relevant
when the database is used for user-validation of an
image retrieval system. It is also important as it
provides an adequate coverage of the neighborhood
of each query density for statistical analysis.

o STILLS: a set of 3500 still images from a commercial
collection, providing more colorful and high quality
images than the average video material of the above
database.

For the reasons detailed above, the VIDEQ database has
been chosen as the reference database for the analyses re-
ported in the following sections while the STILLS database
is used to cross validate the results.
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Fig. 3. The average density of the edgeness descriptor.

The capacity curves computed using the previously de-
scribed dissimilarity measures are reported in Figure 1 for
the VIDEO database. In order to compare the results from
different dissimilarity measures, characterized by different
ranges of values, the measures have been rescaled so that
their maximum value is 100. Inspection of the plots shows
that the L; norm provides the most effective curve, with
an even distribution over the available range. It is also in-
teresting to note that the L; and Kuiper curves are close.
The left tail of the different capacity curves on the VIDED
database deserves some attention. For each image, a sub-
set can be found of very similar images: the neighboring
frames. The x? and Euclidean curves are very steep at
the left tail: they do not make optimal use of the avail-
able range and are possibly much more sensitive to small
differences between images. The indexing effectiveness £
is reported in Table I for the two databases. These values
support the preceding considerations on which dissimilarity
measure is best suited to image retrieval tasks.

4. OPTIMAL HISTOGRAM RESOLUTION

In a typical image retrieval application, many items are
usually involved: it is then important for the descriptive
data to require only a fraction of the image size for stor-
age. Furthermore, the complexity of the search depends
on the descriptors size: the shorter the descriptors, the
faster the search. Binning a probability distribution is a
way to summarize it, and the applied quantization (bin
size) controls how much the distribution is summarized.
The bin width (or widths if a non uniform quantization
is employed) is therefore the most important parameter
of a histogram. The chosen quantization may result in a
over-smoothed, correct, or under-smoothed representation
of the corresponding distribution. A very simple rule pro-
posed by Sturges [21] relates the bin width A to the range

Estimated required nr. of bins for edgeness
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Fig. 4. The curves report the estimated required number of bins using
Scott’s rule for the edgeness descriptor without any mapping,
and using the average cumulative distribution for equalizing the
descriptor. Note that the number of bins estimated according to
Sturges’ rule is 14 as the images considered have 6336 pixels and
the descriptor was normalized to a range A = 256. This value
grossly underestimates the required number of bins, especially
when no mapping is applied to the edgeness descriptor.

of data A and the sample size n:

A

he B
1+ logy(n)

(8)
Theoretical analysis [13] shows that the resulting bin width
provides an over-smoothed histogram (especially for large
samples). The optimal rate of decay of the bin width, with
respect to L, norms, is '/ and rules have been proposed

of the form: R .
h=Cnt/3 (9)

where C' is an appropriate statistic. Scott [14] proposed
a rule of this type, based on calibration with a normal
distribution, with the following form:

h=3496 n~'/3 (10)
where 6 is an estimate of the standard deviation. As noted
in [23], this rule is actually the simplest member of a family
of rules exhibiting good theoretical properties and practical
performance, but requiring, with the exception of eq. (10),
extensive computations. Scott’s rule is appropriate when-
ever the distribution has a roughly unimodal shape. The
distribution of the number of bins estimated according to
Scott’s rule is reported in Figure 2 for some of the image
descriptors.

By looking at the plots of Figure 2, it is apparent that
the edgeness descriptor requires a very high number of bins
for accurate representation. This is due to the shape of its
average density, which is reported in Figure 3. The density
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Fig. 5. The plots report the effect of using the cumulative distribution
for increasing the uniformity of bin populations. Note that the
effect is marked only when a reduced number of bins is used.

is biased towards low values, with the bins corresponding
to the highest values being scarcely populated. This has
two negative effects:

« many bins corresponding to the right tail are empty:
they do not provide (on average) much information,
yet they must be stored and compared;

o if the comparison of densities is done using tests such
as the x2, high fluctuations in the population of the
right tail bins may invalidate the significance of the
comparison.

A partial solution to this problem is to re-map the descrip-
tor values using the probability distribution P(z) (i.e. the
integral of the density):

(11)

effectively equalizing the distribution of the values: the
resulting density more closely resembles a uniform density
[11].

It is not necessary to use eqn. (11) to get an improve-
ment: in the specific edgeness case, a good result can also
be obtained by log-mapping the magnitude value. The dif-
ference in the estimated required number of bins is reported
in Figure 4. The impact of this mapping on the effective-
ness of the descriptor is more marked when the number of
bins is very small, as can be seen in Figure 5.

The capacity curves exhibit a dependence on histogram
resolution which is specific to the chosen dissimilarity mea-
sure. This is related to the fact that the effectiveness of
histogram indexing depends on the number of bins used (if
the representation is too coarse, discrimination is severely

&' = Tmin + (Zmax — Tmin)P ()
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Fig. 6. The plots highlight the dependency of the capacity curves

on the number of bins for the dissimilarity measures on the hue
descriptor. The capacity curves at 64 bins are taken as reference,
and the area (i.e. the L1 distance) between the reference capacity
curve and the corresponding curve at a lower histogram resolution
is reported in the graph.

impaired) and to the different sensitivity of the dissimilar-
ity measures to histogram resolution. The dependence of
the capacity H on histogram resolution is a very impor-
tant issue as the higher the number of bins, the higher the
computational cost incurred for image retrieval. For the
development of an efficient retrieval system, histogram res-
olution should be kept as low as possible without affecting
retrieval effectiveness.

For each dissimilarity function d, it is possible to quan-
tify the impact of the number of bins on the effectiveness
of histogram indexing by computing the distance between
the capacity curves at a reference resolution (in our case
64 bins) and the corresponding curves at a reduced num-
ber of bins (in our case 32, 16, 8). The plot of these dis-
tances computed using the L; norm, which correspond to
the area between the curves, is reported in Figure 6 for the
hue descriptor and for the dissimilarities considered in this
paper. The plot suggests that the dissimilarities can be di-
vided into three classes: the Euclidean norm being the less
stable, the x2 and the L; measures with approximately the
same, intermediate stability, the Kolmogorov-Smirnov and
the Kuiper statistics being the most stable of the group.
The minimum resolution at which the discrimination abil-
ity is close to the one at the reference resolution is 16 bins,
in accordance with Sturges’ rule. A resolution of 32 bins, in
accordance with Scott’s rule, provides essentially the same
effectiveness as the reference resolution, at least for the
most stable dissimilarities.

The histograms considered so far were obtained by
marginalizing over the spatial components of the corre-
sponding distributions. While resulting data are compact,
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Fig. 7. The plots show the effect of incomplete marginalization over
the spatial variables when keeping the size of the descriptors fixed
(in this case 64 bins). Note how the use of multiple regions in-
creases the effectiveness of the luminance descriptor. The Lj
metric is used for the computation of the curves.

they represent only a rough summary of the information
originally available in the image. In particular, all the
information regarding the spatial distribution of the re-
lated descriptors has been lost. A compromise to complete
marginalization over the spatial components is to quantize
the coordinate space into a limited number of cells. By
analyzing the capacity curves it is possible to check for in-
creased effectiveness of the resulting descriptors when this
quantization is introduced, and if there are any advantages
in using spatial information while constraining the overall
number of bins used (see Figure 7). Another way spatial
information can be taken into account is to partition the
set, of pixels by imposing some relation other than spatial
proximity. For example, a binary relation could be im-
posed, associating each pixel with the pixel whose position
is obtained by a fixed translation. The hue (and luminance)
co-occurrence descriptors are obtained in this manner. The
imposed spatial relation influences the effectiveness of the
descriptor as detailed by Figure 8.

The capacity curves for the descriptors at 64 bins (us-
ing the appropriate mapping for edgeness) are reported in
Figure 9. The resulting ranking according to effectiveness
is further confirmed by the principal component analysis
of the data as reported in Figure 10. The rating of the
descriptors, given by their indexing effectiveness &£, is con-
sistent across the two databases even if the curves show
some differences, and is reported in Table II.

The characterization of the image descriptors and the
assessment of the comparison functions rely on the use of
large image sets. This would be avoided if the histograms
could be generated randomly using a realistic model pre-
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Fig. 8. The plots show the effect on the capacity curves of varying
the spatial relation (Az, Ay) used in the computation of hue co-
occurrence. Note that by increasing the distance between the
pixels of the couple, the effectiveness increases. The curves are
computed using the L; metric.

serving the characteristic distribution in the histogram
space [20]. In this case, the results should be interpreted
with care. We have generated a set of random histograms
to simulate the luminance histograms. They were obtained
by combining two Gaussians of random normalization, o,
and centers (one in the left half of the luminance range, the
other one in the right) modulated by a multiplicative noise.
The resulting capacity curve is compared to the curve ob-
tained on the database of still images for the luminance
descriptor using the L; metric in Figure 11: the resulting
curves are very similar. However, if we use a different dis-
similarity measure for computing the capacity curves, their
difference is more marked, suggesting that the random his-
tograms do not accurately reflect the real distribution.

The dependence of the capacity curves on the database
considered is clearly reflected in Figure 12. While the
distribution of the luminance for the two databases is
very similar, the distributions of hue are different: the
database of still images is much more colorful than the
video database and this is reflected by a shift of the his-
togram distance from lower values (VIDED) to higher values
(STILLS).

5. APPLICATIONS

The analysis of histogram effectiveness in image discrim-
ination is mainly useful for the design of image retrieval
systems. However, it is not limited to image retrieval and
can also be used to derive some global descriptive infor-
mation from a collection of images such as the frames of
a complete video clip. Another application is that of tem-
plate matching, i.e. the search for image regions that are



| Descriptor | Evipeo | Estivs |
Co-occurrence (hue) 57 68
Hue 55 70
Co-occurrence (lum) 52 50
Luminance 43 46
Edgeness 22 32

TABLE II
THE EFFECTIVENESS £ OF THE DIFFERENT DESCRIPTORS. NOTE THAT
THE EFFECTIVENESS OF HUE AND HUE CO-OCCURRENCE ARE NEARLY
THE SAME.
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Fig. 9. The plots report the capacity curves, computed using the

L; distance and 64 bins per histogram, for the image descriptors
considered in this paper on the VIDEQ database.

similar to one or more reference templates.

The capacity of the visual descriptors can be used for the
design of a scalable image retrieval system which makes
optimal use of the available storage and computation re-
sources. Low level image descriptors can be introduced
into the system according to their indexing effectiveness &,
the most discriminant being introduced first (see Figure 13
for the capacity curves when multiple descriptors are used).
Sorting the descriptors according to their effectiveness may
also improve the efficiency of the computation of histogram
differences. In image retrieval tasks, a threshold on the
minimum acceptable similarity is usually imposed to limit
the number of retrieved items: the computation of d can
be stopped as soon as its monotonically increasing value
exceeds the retrieval threshold. Comparing the descriptors
sorted by decreasing effectiveness is expected to increase
the computational savings. Furthermore, for each of the
descriptors an appropriate resolution can be determined
by the analysis of the capacity curves. The effectiveness of
the introduction of multiple regions in the descriptions can
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Fig. 11. LEFT: the capacity curves for a real database and for
a randomly generated one using the L; distance; RIGHT: the
capacity curves when the Kuiper statistic is used.

also be monitored, adding another dimension for scalability
of the resulting system. The results of the analysis on the
dissimilarity functions and histogram resolution, relatively
to the two databases considered, support the following con-
clusions:

o the L; norm provides the best qualitative results (see
Figure 1) being at the same time the less computa-
tionally demanding;

« histogram resolution can be as low as 16 bins (see Fig-
ure 6).

The latter result is important as the computational require-
ments scale linearly with the number of bins. Furthermore,
using a reduced number of bins makes the representation of
data using few digits in fixed point format feasible. A very
performing system can then be built where images can be
compared at a rate of over one million images per second
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on a standard PC (see [2]).

The capacity curves can also be used to infer some global
descriptive information which can be used to characterize
a whole set of images, such as the frames of a complete
feature movie. As an example, we show how to obtain an
estimate of the number of key-frames required to represent
a video clip. Let us assume that the video is composed by m
different shots, each shot being built by similar frames. The
point at which the capacity curve slope abruptly increases
determines the threshold 6y to be used for judging two
images as similar. Let [0,8] represent the region to the
left of the threshold. If the shots have the same length,
k; = k,Vi, we have:

=3 k,.(k;— 1) mk(k2— 1) 1)

i

where by represents the area to the left of 8y and the sum

is over the shots. If the shots have different lengths:

ki(ki —1
) (2 )

i

k;
>3

%

bo

Q

m(k? + o?)
2

~ (13)
where h and o are respectively the arithmetic average and
the standard deviation of the set {k;}, and the relation
> k? —mk* = mo? has been used. The overall area of the
curve is given by:

(14)

using the fact that the overall number of frames is n = mk.
By taking the ratio:
b 1
—RAM—s
1+ (Z)

an approximate value for the number of shots m can be
derived:

(15)

(16)

An example is reported in Figure 14. The plot shows the
characteristic shape of the left tail of the capacity curve for
a 5 minutes long video clip. The point at which the slope
abruptly increases (6p = 15) is clear and the estimated
number of key frames (m = 138), each one representing an
homogeneous portion of video, is in good accordance with
the available ground truth (m = 141).

Template matching tasks are very similar to image re-
trieval applications. The major difference is that each sin-
gle image represents the set of all possible overlapping sub-
regions whose size corresponds to that of the reference tem-
plate. Matching by histogram comparison is an efficient
strategy, as the computation of histograms for nearby re-
gions requires only minimal updating. The increased ef-
ficiency and effectiveness obtained for image retrieval ap-
plications through appropriate choices of the comparison
dissimilarity measure, low level image descriptors, and his-
togram resolution are automatically transferred to tem-
plate matching tasks. Future work will address two related
issues: the extension the functionalities of an image re-
trieval system by enabling the search for image details (i.e.
looking for a query image in an arbitrary position within
larger images) and the analysis of the robustness of his-
togram matching (see [1] for a simple introduction of the
concept robustness in template matching tasks).

6. CONCLUSIONS

In this paper a general method for comparing the effec-
tiveness of histograms in image comparison tasks has been
introduced and used to solve some important design issues
in the development of a scalable, efficient (i.e. fast), and
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Fig. 14. The plot reports the left tail of the capacity curve, computed

with the Li metric, for a video containing commercials. The
video is approximately 5000 frames long and contains 141 shots.
Choosing §p = 15 an estimate of 138 shots is obtained.

effective (i.e. discriminant) image retrieval system based
on the query-by-example paradigm. The results, based on
the analysis of the histogram capacity curves, show that,
among the most commonly used dissimilarity measures, the
L1 norm is the most effective for histogram indexing. Fur-
thermore, an image retrieval system can rely on low res-
olution histograms without severe degradation of retrieval
performance. Several low level image descriptors (hue, lu-
minance, etc.) have been compared and their retrieval ef-
fectiveness assessed through their capacity curves. This re-
sult permits the design of scalable image retrieval systems
which make optimal use of computational and storage re-
sources.
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