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Abstract

A currently relevant research field in information sci-
ences is the management of non-traditional distributed mul-
timedia databases. Two related key issues are achieving
an efficient content-based query by example retrieval and a
fast response time. This paper presents the architecture of a
distributed image retrieval system which provides novel so-
lutions to these key issues. In particular, a way to quantify
the effectiveness of low level visual descriptors in database
query tasks is presented. The results are also used to im-
prove the system response time, an important issue when
querying very large databases. A new mechanism to adapt
system query strategies to user behavior is also introduced
to improve the effectiveness of relevance feedback and over-
all system response time. Finally, the issue of browsing mul-
tiple distributed databases is considered and a solution pro-
posed using multidimensional scaling techniques.

Keywords: image retrieval, relevance feedback, dis-
tributed databases, multidimensional scaling, clustering,
image database browsing.

1 Introduction

The current ever growing amount of multimedia data re-
quires a big integrated effort in the research fields of Com-
puter Vision, Information Retrieval and Database Manage-
ment for its effective management. In particular, retrieving
information from multimedia repositories requires the de-
velopment of techniques to supplement traditional methods
based on textual descriptions and searches. The reason for
this necessity is twofold: associating textual descriptions to
multimedia data can be very expensive, and, what is even
more important, textual descriptions may not characterize
data adequately for subsequent retrieval. The latter issue
is of particular relevance for multimedia material, whose

searching criteria and features are highly dependent on user
goals.

An attempt to overcome this limitation is through query
by example where non textual queries are formulated by
the user using multimedia items related to the material
he/she is looking for (e.g. images or video clips for
searching footage). Recently many multimedia retrieval
systems have investigated the query by example frame-
work. Some of the most relevant are QBIC

� TM � , which
is IBM’s Query By Image Content system (see [1]), Ex-
calibur Visual RetrievalWare(r), a comprehensive applica-
tion development software to provide content-based, high-
performance retrieval for multiple types of digital visual
media, Visual Information Retrieval (VIR) Image Engine
by Virage, a set of libraries for analyzing and comparing
the visual content of images, MARS (Multimedia Analy-
sis and Retrieval System), an application developed by the
Beckman Institute and Department of Computer Science at
the University of Illinois, whose aim is to integrate various
techniques in the fields of Image Processing and Informa-
tion Retrieval into an Image Data Base Management Sys-
tem that is accessible from the web.

In the query by example framework, the user formulates
a query by providing examples of objects similar to the
one he/she wishes to retrieve. The system converts them
into an internal representation used for assessing their sim-
ilarity to the items stored in the database to be searched.
The main advantage of query by example is that the user is
not required to provide an explicit description of the items
which is instead computed by the system. In order for this
paradigm to be effective, good content descriptions must be
computed automatically by the system and ways to compare
them obtaining results in accordance with human judgments
should also be available.

This paper discusses the use of pattern analysis tech-
niques, such as density estimation, clustering, and multi-
dimensional scaling, for the development of a computer as-
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sisted image search system: COMPASS.
The architecture of the system is described in Section 2.

The issue of small yet effective image descriptors is con-
sidered in Section 3, while different query strategies with
relevance feedback are described in Section 4. Algorithms
for optimizing search strategies are presented in Section 5.
Finally, some browsing issues are considered in Section 6
and the concluding remarks are reported in Section 7.

2 System architecture

The overall structure of COMPASS, an image retrieval
system to support the query by example paradigm for mul-
tiple distributed databases, is presented in Figure 1. The
system is configured as a client-server architecture in which
a client application can submit a user query to multiple im-
age servers. The answers from multiple image servers are
then merged and proposed to the user as a single result.

Following the query by example paradigm, users rely on
the images themselves to formulate queries. A generic im-
age � is characterized as a triple

���������	� � whose elements
represent a complete description of the image pixels

�
, pos-

sibly indirectly by pointing to the corresponding memory
storage, a derived feature description

��
�������
, automati-

cally computed by the system, and associated meta data
�

providing information on image contents. Derived image
descriptions can be computed directly by the client appli-
cation while meta information is not usually provided auto-
matically.

A query by example � is defined by giving a set � of
images and, possibly, by selecting a subset � of

�
and a

comparison strategy � to be used by the image servers when
comparing the query images to those stored in the database:

� 
 � � � � � � � (1)

The query images can be� local or remote images accessible from the client ap-
plication: the user may provide appropriate meta-data
which can be used to supplement the visual similarity
search with a more traditional textual search;� images from a previous query considered as relevant
by the user;� images from selected image servers, relying on the
browsing functionalities of the client.

In order to answer a query, the image server compares the
images in the query set � to the stored ones using strategy� , obtaining a dissimilarity score for each of them. The
dissimilarity of images could be computed using both the
derived descriptors � and image meta-data

�
. Derived de-

scriptors are often represented as numerical vectors while
meta data are usually in textual form. The analysis pre-
sented in this paper will be limited to the use of derived de-

scriptors represented as numerical vectors, leaving out any
available meta data in the computation of image similarity.

As the set of query images must be compared to other
images, a function to compute the dissimilarity of an image
from an image set must be introduced. If we restrict to met-
ric spaces for the derived descriptors, the distance between
an image � and an image set � can be computed using the
following formula:�

� � � � � 
������ "!$# �
% � � � �'& � (2)

where
%

represent the distance defined in the metric space.
The effectiveness of feature comparison is improved by

the use of relevance feedback which modifies the distance
of the metric space using information derived from the in-
teraction of the user with the system. The servers then sort
database items by increasing dissimilarity. The set ( of the
top ranked ones is returned to the client together with their
dissimilarity value and, if available and requested, associ-
ated meta-data. The client, upon receiving the answer from
each server, sorts the resulting complete set by dissimilarity
and offers to the user a single answer. The interaction of the
user with the client is based on a graphical interface (see
Figure 2), which, in close resemblance to the interfaces for
querying traditional databases, provides:� an area for the specification of the query: words are

replaced by small image icons;� the possibility of restricting searchable image content:
document structure specifications are replaced by the
different image content descriptors;� an area where retrieved items are displayed;� a way to limit the number of items retrieved (e.g. by
imposing a threshold on the minimum required image
similarity).

Besides database query by example, COMPASS also sup-
ports another very important activity: database brows-
ing. This operation is important in the case of multime-
dia databases used as repositories of material to be cre-
atively (re)assembled into new multimedia products such
as cd-rom, composite images, footage, etc. Browsing sup-
port requirements differ from those of querying: database
items should be organized and presented to the user in such
a way that exploration of content is possible. The solution
investigated in COMPASS is the organization of databases
in clusters of similar images (see Section 6). Each cluster
is represented by the client with a key image and cluster el-
ements can be displayed on user demand providing a more
detailed view of available images.

3 Image description

One of the key issues in querying image databases by
similarity is the choice of appropriate image descriptors and
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Figure 1. A general architecture for an image retrieval system based on the query by example
paradigm. The shaded blocks are considered in detail by the current paper.
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Figure 2. The COMPASS client GUI. The areas corresponding to the different functionalities of the
client are outlined.
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corresponding similarity measures. In a recent paper [2] the
problem of quantifying the effectiveness of several low level
visual descriptors was addressed. The proposed solution
relies on the following definitions:

Definition 1 Given an n-dimensional histogram space �
and a dissimilarity measure1 % on � , the capacity curve �
of � is defined as the density distribution of the dissimilarity
between the two elements of all possible histogram couples
within � .

Histogram capacity curves provide a basis on which the
effectiveness, i.e. the discrimination ability, of different im-
age descriptors can be compared. The shape of � ��� � is an
indicator of the distribution of histograms in � with the
topology induced by the selected comparison dissimilarity
measure. If the average value of dissimilarity is low, his-
tograms are not sparse enough in � and histogram indexing
is not effective. This can be formalized by the following
definition:

Definition 2 The indexing effectiveness � of an histogram
space � is given by the average dissimilarity value:

� 
���� � ��� � % � (3)

The indexing effectiveness � can be used to assess several
descriptor-dissimilarity combinations for image retrieval
applications. Several ways to compute image dissimilarity
were considered in [2]: 	�
 , Kolmogorov-Smirnov, Kuiper,
and �� norms. The ��� norm provided the best overall re-
sults in terms of indexing effectiveness and stability with
respect to the number of histogram bins used. The main
findings of [2] on the discrimination ability of some basic
image descriptors are summarized in Table 1 and Figure 3.
Reported data are based on two databases:� VIDEO: a set of 40000 frames from nine different

video clips. The video material was varied, rang-
ing from comics, news, to documentaries and action
movies.� STILLS: a set of 3500 still images from a commercial
collection, providing more colorful and high quality
images than the average video material of the above
database.

The effectiveness of the different descriptors can also be
used to optimize the order in which they are compared. In
image retrieval tasks, a threshold on the minimum accept-
able similarity is usually imposed to limit the number of re-
trieved items. The computation of image dissimilarity can
be stopped as soon as its monotonically increasing value
exceeds the retrieval threshold. When multiple histograms

1In this context, a dissimilarity measure is a bounded, positive, and
symmetric function defined over a subset of ��������� .

Descriptor � VIDEO � STILLS
Co-occurrence (hue) 57 68
Hue 55 70
Co-occurrence (lum) 52 50
Luminance 43 46
Edgeness 22 32

Table 1. The effectiveness � of some low-
level visual descriptors. Edgeness is defined
as the magnitude of the luminance gradient
while the co-occurrence of hue or luminance
is a two dimensional histogram obtained by
partitioning the image space into couples of
pixels by means a a binary spatial relation: a
pixel located at

������� � is associated to a pixel
at

������������������� � and the descriptor values
at the two pixels are used as indices in a 2-
dimensional histogram.

are used to characterize an image, they can be concatenated
in many different ways to obtain a single numerical vector
describing the image. The order in which the histograms
are concatenated impacts on the performance of the system.
Comparing the descriptors sorted by decreasing effective-
ness is expected to increase the computational savings as-
sociated to the use of a retrieval threshold. Experiments on
the same data used in [2] are reported in Figure 4 and con-
firm this expectation.

4 Query by examples with Relevance Feed-
back

Relevance feedback is a fundamental mechanism by
which system response can be improved by using infor-
mation fed by the user [3, 4, 5, 6]. Whenever the system
presents to the user a set of images considered to be simi-
lar to the provided examples, the user can pick among them
the images he/she considers most relevant to the submitted
query and add them to the original query. The resulting ex-
tended set �! can be used to improve system response in a
variety of ways [6]. A common approach to the implemen-
tation of relevance feedback for a system using image de-
scriptors in numerical form is that of feature weighting and
is based on the vector model used for textual documents.

Image derived descriptors
� 
 � � � �

are obtained by
binning, with the same number of bins, the density esti-
mates of the corresponding image characteristics (e.g. lu-
minance, hue, etc.). Exploiting the homogeneity of descrip-
tors normalization and dimensionality, the dissimilarity of
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Figure 3. The plots report the capacity curves,
computed using the ��� distance and 64 bins
per histogram, for some of the image descrip-
tors considered in the paper.

two images can be computed by:
% � � � � & � 
�� ��� � ����� � �	� 
 � ���


&�
� �

(4)

where � represents the � -th descriptor and � the value of
the � -th bin of the descriptor. This distance introduces a
metric structure in the derived descriptors space and can be
used to compute the distance of the query set �  from each
database item using the formula reported in Eq. 2.
The default set

� � � � is
��� ������� ��� �

and can be modified by
the user to assign different weights to the image descriptors,
possibly excluding some of them from the computation of%

. The set
��� � � �

is computed by the system and is used to
incorporate relevance feedback into the comparison metric.
Relevant images should be similar to each other for some
of the components of their descriptors


 � �
. This means that

the standard deviations � � � computed over set �  should
be small for the components capturing the similarity of the
images and larger for the components which are not rele-
vant. A method to emphasize distances along the relevant
directions is to use the following set of weights [7]:� � � 
�� �

� � � (5)

In this paper a family of weighting schemes is derived from
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Figure 4. The plot reports (in double logarith-
mic scale) the expected gain in speed result-
ing from properly sequencing the image de-
scriptors before comparing them. Note the
significant advantage over the worst case,
where the order in which the descriptors are
used is inversely proportional to their capac-
ity.

the previous equation � � � 
���� �
� � � (6)

where
� � 
������ � �"! �� �# ! � is a normalizing factor, while$

is a parameter which modulates the weighting effect and
can be varied to optimize image comparison results. The
effect of feature weighting on the computation of distances
in descriptor space is presented in Figure 5. There are some
major drawbacks to the use of Equation 6:� the use of � � � tacitly assumes that the images in the

query represent a compact set with ellipsoidal shape;� the comparison metric is modified in the same way all
over the descriptor space;� the time necessary for the computation of

�
depends

on the number of images in the query set � .
Furthermore, the amount of weighting specified by

$
is ex-

pected to be query dependent and should be optimized on a
case-by-case basis. A way to overcome these drawbacks is
presented in Section 5.

An interesting addition to relevance feedback for im-
age retrieval comes from the introduction of negative exam-
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Figure 5. The effect of feature weighting on
the computation of distances. The plots re-
port the value of the distance for each point
in a two dimensional descriptor space from a
set of five query images whose location cor-
responds to the minima of the plot. The in-
troduction of feature weighting increases the
distance values along the direction of lower
dispersion of the query set, i.e. the horizontal
axis.

ples. An approach based on the generalization of boolean
searches has been presented in [8] relating image distances
to fuzzy predicates. In this paper a new approach is intro-
duced using negative examples as perturbation in the metric
used to compute the image distances. The user, by pro-
viding positive examples, implicitly defines a generalized
boolean query whose value is given by normalized image
distances. However, when the images looked for are orga-
nized in complex arrangement in the descriptor space, com-
puting image similarity with Equations 4 and 6 may result in
persistent irrelevant images, the negative examples. Knowl-
edge of which of the retrieved images are not relevant to the
current query, can be used to better characterize the regions
of the descriptor space which contain relevant images by
creating negative regions that can be used to carve com-
plex geometries in feature space. The set ��� of irrelevant
images retrieved by the system can be used to introduce a
modified dissimilarity function

�
&�

& � � � �! � � � � 

�

� � � �! �
� � � � � �  ��

� � � � � ����� (7)

where � represents the intensity of the action of ��� and �  
represents the set of relevant images (i.e. the positive exam-
ples). As set � � is close to �! , for points lying far from� � and �! in feature space

�
	 �
& , for points nearer

to �� than to � � the original dissimilarities are reduced,
and for points nearer to � � than �! they are increased. A
visual presentation of this effect is shown in Figure 6 for
different values of � .

5 Query Optimization

The effect of the drawbacks associated to the use of
Equation 6 on the effectiveness and efficiency of relevance
feedback can be minimized by� determining whether the specified query set � while

not being compact itself, is composed by two or more
compact sets: the query could then be split into sim-
pler sub-queries, each of them better suited to the use
of Equation 6. Let us note that this splitting also intro-
duces local modification in the metric structure of the
descriptors space;

� condensing the query set using a smaller number of im-
ages while preserving the effectiveness of the original
set;

� adaptive choice of
$

, the parameter that modulates the
amount of metric change.

A block structure of the resulting query optimization mod-
ule is reported in Figure 7, while the following sections in-
troduce the necessary pattern analysis techniques.
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Figure 6. The effect of the introduction of neg-
ative examples on the computation of dis-
tances when different � values are used. Neg-
ative examples define repulsive regions in
pattern space by modifying the metric used
in the computation of image distances.

5.1 Query subdivision

The cloud of points representing the query images in the
descriptor space may exhibit local grouping, i.e. clusters,
suggesting the splitting of the original query set into mul-
tiple subsets, each of them characterized by the images be-
longing to one of the clusters.

From a data analysis perspective, the relevant issue is
whether the structure of the point distribution supports the
presence of multiple clusters or not. There are no com-
pletely satisfactory methods to determine the number of
clusters for any type of cluster analysis [9, 10]. The situ-
ation analyzed by the current paper presents additional dif-
ficulties due to the small number of images used to define
the query: no asymptotic results can be used, and methods
relying on density estimates can not be applied. The chosen
strategy is based on two steps:

1. establish whether the original query should be split or
not;

2. if the original query should be split determine the num-
ber of clusters into which it should be split.

The first step is based on the use of a statistic originally pro-
posed by Duda and Hart [11]. Let us denote with

% � � � � & �
the distance between the descriptors of two images � � � &
and with � ��� � the clustering criterion function for

�
clusters� � ������� � ��� :

� ��� � 
 �� ��� � �
 #��
	

% � � ��� � � (8)

where
� �

is the central image of the � -th cluster. The
quantity � �� � is a random variable whose average value de-
creases monotonically with

�
. In particular, if data are orga-

nized into �� compact, well separated clusters, the value of
� �� � is expected to decrease rapidly until �� 
��

, and much
more slowly thereafter. Knowledge of the distribution of
� ��� ��� � � � � under the null hypothesis that all samples be-
long to a single cluster forms the basis for a test to reject
or accept the null hypothesis. Unfortunately, analytical re-
sults are often not available. An approximate result is de-
rived in [11] when the distance used in the comparison is the
Euclidean norm. As the comparison metric used by COM-
PASS is the ��� norm for which results are much harder to
obtain, a Monte Carlo approach was chosen [12]. As de-
tailed in Section 3, each image is represented by histograms
of several low level visual features, normalized to unit. In
order to determine the distribution of � 
 � ��� ��� � � � � for
different sample sizes � (from 6 to 16), 10000 random sam-
ples were generated that satisfied the image descriptors con-
straints: number of features, number of bins, and normaliza-
tion to unit. For each random sample the Linde-Buzo-Gray
clustering algorithm [13] using the � � metric was applied

8



10 times to find the optimal two cluster partition. The cor-
responding values of � were then used to compute the re-
quired distributions which are summarized in Figure 8. As
anticipated, the distributions for different values of � are
markedly different, � being too small to ensure an asymp-
totic regime.

Given a set of � query images the value of � is com-
puted: if the null hypothesis of a single cluster can be re-
jected with the prescribed confidence, the appropriate num-
ber of clusters should then be determined. The most appro-
priate number of sub-queries into which the original query
should be split is determined by the so called silhouette co-
efficient � introduced in [14]. Let us introduce the follow-
ing quantities:

� � � � 
 �
� ��� ���

��
#���� ���	�

�

� �
% � � � � �

�
�

� � � � � � 
 �
� �

��
#��
% � � ��� �

�
�

� � � � 
 � � �� 
� ��� ��� � � � � � �

where � � is the number of elements in cluster � ; the sil-
houette of element � is then defined as

 � � � 
 � � � �
�
� � � ������ � � � � � � � � � � � (9)

When a cluster contains a single object,  � � � 
��
. The

higher the value of  � � � the stronger the membership of � to
its corresponding cluster. Elements that can not be clearly
assigned to any cluster have a silhouette value near to zero.
The silhouette coefficient � is then defined as

� 
 �
�

�� � � �  � (10)

The value of � is bound to the closed interval �
� � �����

: the
higher the value the better the overall classification of data
for the given clustering. Furthermore, � is a dimensionless
quantity that does not change when the distances between
samples are multiplied by a constant factor. The knowledge
of the silhouette coefficient can be used to choose an appro-
priate number of clusters �� so that

� � �� � 
 ������ � 
 ��������� � � � � � (11)

The above computations are used to subdivide the original
query images into several, simpler queries, each of which is
better conditioned for the application of relevance feedback
mechanisms (see Figure 9). The resulting simplified queries
are then submitted to the image databases. For each simpli-
fied query a new comparison metric is computed according
to Eq. 6. As a result, the metric used for image compari-
son is no longer a uniform modification of the unweighted

distance: each sub-query locally modifies the comparison
metric, overcoming one of the limitations of the original
feature weighting approach.

5.2 Strategy optimization

Splitting the original query into smaller ones does not
impact directly on the complexity of the computation of

�
and does not provide any hint on the optimal value of

$
.

However, the system, upon receiving user feedback, can au-
tomatically compare different query strategies by looking at
the ranking of the user selected images in the correspond-
ing answers: the lower the average rank, the better the strat-
egy. Note that this is quite different from the approach in-
troduced in [15] where the user is required to rank all the
image returned by the system.

Two aspects characterize the choice of the optimal search
strategy: the determination of the best query representation
and the selection of the optimal

$
value. In the following

analysis only two representations for the (positive) query set
are considered:� the original set �! ;� a condensed set obtained replacing the images in �  

with a virtual image represented by the arithmetic av-
erage of the descriptors in set.

For each representation of the query set, different values
of

$
provide different strategies: the resulting set of dis-

similarity functions constitutes the optimization space from
which the best comparison method must be chosen.

Replacing the original query set with a single, virtual
average image reduces the amount of computation required
to estimate the distance of each database image from the
query images. However, this simplification may not be al-
ways appropriate. As an example, if the original query set is
not compact, the results may be meaningless, as the average
image could be located in a region of feature space which is
not representative of the original set. While query subdivi-
sion reduces this kind of problems, the possibility of using
the condensed representation should be assessed more di-
rectly. As the purpose of using such a representation is to
speed up the computation while obtaining essentially the
same results associated to the original, complete set, it is
necessary to verify that the two representations yield very
correlated answers.

At each interaction, the system returns an image set (
with the � database images most similar to the submitted
query. Using this restricted number of images, it is possi-
ble to decide which representation of the query set is most
efficient for the given query. This can be done by simu-
lating system response using the restricted set ( as image
database. If the responses using the full and condensed rep-
resentations are strongly correlated, the condensed repre-
sentation is to be preferred being faster. Let us see how this
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correlation can be computed.
Each image in ( can be characterized with a couple of

values
�
�
�� � ���� � representing its dissimilarity to the query

using the condensed and full representations respectively.
The set

� �
�
�� � � �� � � ��� � ������� � � can be considered as a ran-

dom sample from a population with a bivariate distribution
function. Let � � be the rank of

���� among

���
� ������� � ����

when they are arranged in descending order, and � � the
rank of

�
�� among

�
�� ������� � � �� defined similarly to � � . The

amount of correlation of the two answers can be quantified
by their Spearman rank correlation coefficient:

��� 
 � � � � �
�
� � � � �

�
� �� � � � � �

�
� � 
 � � � � � �

�
� � 
 (12)

where � and � are the average values of
� � � � and

� � � � , re-
spectively. An important characteristic of rank correlation is
its non-parametric nature. To assess the significance of cor-
relation it is not necessary to know the bivariate distribution
from which

�
�
�� � ���� � are drawn. Given a confidence level,

it is possible to decide whether the complete and condensed
query representations results are sufficiently correlated or
not.

The next step in choosing the optimal strategy is the se-
lection of

$
. In order to adapt its value to the query more

information is needed. The required additional data are pro-
vided by the user him(her)self with the selection of relevant
images from set ( . Let us restrict to a discrete set

� $ � �
of

possible values.
For each value

$ �
a query can be performed on ( : the

optimal value of
$

is chosen by minimizing the average rank
of the newly added relevant images and of the original ones
if they were selected from the queried databases. As in the
complete representation the query images obtained from the
queried databases always appear in the first positions (hav-
ing a zero distance), this procedure is only useful to opti-
mize the condensed query. However, the value of

$
can also

be optimized for the complete representation in the follow-
ing way: for each image in the query set obtained from the
queried databases, a synthetic query is created by removing
it and its rank in the resulting system answer stored. The
average rank over the synthetic queries is then used for the
optimization.

Data from two different queries are reported in Figure 10
and show how the optimal value for

$
changes for different

queries. It is important to note the increase in correlation be-
tween the full and condensed queries with increasing

$
and

the shape of the average rank curve which exhibits well de-
fined minima. The condensed query representation is then
employed using the lowest value of

$
for which the rank

correlation of the condensed and complete representation
results satisfy the required confidence level.
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Figure 7. The figure reports the flow chart of
the proposed query supervisor agent.
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Figure 8. The plot reports the distribution of
the � � � ��� � � � � statistic for ��� clustering using
sample points generated taking into account
the characteristics of the image descriptors
used in COMPASS.
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Figure 9. The figures report two different
queries and the way they would be split by
the system.
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Figure 10. The plot reports the average rank of
the query images when a condensed search
is employed with different weights. The re-
sults from two different queries are reported.
The rank correlation with the results obtained
using all the images in the query bag is also
reported.

6 Database Organization and Browsing

Browsing an image database is substantially different
from querying it and presents specific interaction prob-
lems. These problems become more evident when multi-
ple databases are browsed simultaneously. As large image
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databases can not be presented in their entirety to the user,
useful abstractions should be developed, presenting to the
user a limited number of key images which can be used to
pivot the search. It would also be important to present the
images in such a way that their visual presentation reflect
the notion of similarity used by the system (possibly mod-
ified by the interaction with the user): nearby images (in a
list or on a screen) should be visually similar and similar-
ity relations among images should be preserved as much as
possible. The task is further complicated by the dynamic
nature of image similarity due to the adoption of relevance
feedback techniques which change the metric structure of
the descriptor space.

The solution adopted by COMPASS relies on cluster and
multidimensional scaling techniques. Each image database
is clustered into groups of images similar to each other ac-
cording to the ��� norm. Each group is then represented by a
key image, the image closest to the cluster center. The set of
cluster representatives provides the required abstraction for
database browsing. Each representative acts as an hyper-
link to the complete cluster population that can be shown to
the user on demand.

As the number of clusters is usually much smaller than
the number of images in the database, computationally
expensive algorithms can be applied to organize the visual
presentation of the key images to reduce browsing stress.
Let us consider the situation in which two databases are
used for browsing and a weighted � � norm is used for
comparing the images. Key images should be arranged on
the screen in such a way that nearby images are visually
similar. The user can choose one (or more) of the image
features, e.g. luminance, as a sorting key for the arrange-
ment of the images onto the screen (see Figure 12). The
key images from the two databases are then arranged onto
a line preserving as far as possible their mutual similarities
as quantified by � � distance. This can be accomplished by
using multidimensional scaling techniques [11] which deal
with the following problem:

Given a set of similarities or distances between every
pair of � items, find a representation of the items in few
dimensions such that the inter item proximities nearly
match the original similarities or distances.

While it is not necessary to use the values of the simi-
larity between the samples (the rank orders could be used
instead), the following discussion is restricted to the case
where the values are explicitly used. The following para-
graphs follow the basic introduction of [11] to multidimen-
sional scaling.
Let � 
 ��� � � ��� � ������� � � be a set of samples represented by
points in ��� . Let � 
 �	� � � ��� � ������� � � be the projection of
the � in ��
 ������

and � � � � % � � the distances between

samples � and � in ��� and ��
 respectively. The objective
of multidimensional scaling is then to find a configuration
of image points

��� � � ��� � ������� � � for which the � � �
� � ��� � dis-

tances � � � are as close as possible to the original distances% � �
. A measure of closeness, usually called stress, must

then be introduced: the lower the stress the better the ob-
tained scaling. Three commonly used closeness measures
are:

���� 
 �� ��� � � 
� � � ��� � � % � � � � � � � 
 (13)

�
� � 
 � ��� ��� % � ��� � � �� � � � 


(14)

� � � 
 �� ��� � � � � � ��� � � % � � � � � � � 
� � � (15)

These criterion functions are invariant to rigid trans-
formation of the points and to global (uniform) scaling.
Among the above criterion functions, ��� � was chosen to
perform the reported experiments, being a compromise be-
tween ����� , which emphasizes large absolute errors, and
�
� �

, emphasizing large fractional errors. It is important to
observe that it is not necessary for the distances

% � �
and � � �

to be computed in the same way, e.g using the Euclidean
distance. This is true in particular in the reported con-
text as the original distances between image descriptors are
computed using the weighted � � norm while the distances
of the projected set � are computed using the Euclidean
norm which corresponds to the user perceived distance in
the space where images are to be presented. The neces-
sity of relying on different metric structures in the original
and projected spaces somehow limits the choice of the algo-
rithms to be used in finding the desired configuration. For
instance, a commonly used technique to project vectors onto
a lower dimensional space is given by the Principal Compo-
nent Analysis (PCA). This algorithm provides good results
when the metric structure in the original and reduced space
is given by the Euclidean norm and the stress is measured
according to ����� .

Direct minimization of the stress value leads to the so
called Sammon mapping which does not depend on the type
of distances used in the source and destination spaces but
suffers from the following disadvantages:� high computational requirements;� presence of many suboptimal local minima;� the map is given as a look-up table that must be recom-

puted whenever new points are added.
More recently, a fast algorithm for multidimensional scal-
ing, FastMap, was introduced [16]. Given the set of orig-
inal distances, the algorithm finds a representation of the
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original points in ��
 computing the set � � � using the Eu-
clidean distance. When new data points are added, they can
be easily projected in the reduced space. In the presented
work the three cited algorithms (PCA, Sammon mapping,
and FastMap) have been compared in the task of projecting
points from ��� � to ��� using � � � as stress indicator and dif-
ferent metrics in the source and destination spaces. Points in
source space are given by the image luminance histograms.
The results are reported in Figure 11. Sammon mapping
outperforms the competing algorithms in quality and is con-
sidered to be a viable choice in spite of its shortcomings.
An example of the application of multidimensional scaling
to the presentation of images using as the luminance his-
togram as derived descriptor is reported in Figure 12.
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Figure 11. The plot reports the final stress
��� � for different distances and dimensionality
reduction techniques.

7 Conclusions

In this paper an architecture for a general image retrieval
and browsing system featuring relevance feedback was pre-
sented and discussed. In particular, the possibility of tuning
search strategies and comparison metrics to varying user be-
havior was investigated and novel solutions presented us-
ing pattern analysis techniques. The resulting image re-
trieval system is able to optimize retrieval speed by reduc-
ing the number of query images while preserving retrieval
effectiveness. The use of local modification of the image
comparison metric, coupled to the use of negative exam-
ples further enhances the ability of the system at modeling

Figure 12. The two figures show the ef-
fect of sorting the cluster representatives of
two databases using global luminance infor-
mation. Note how the lower picture, with
sorted representatives, appears more homo-
geneous and easy to analyze than the upper
one where images are unsorted.
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user needs on a per query basis. The possibilities offered
by data analysis techniques have been adapted to the activ-
ity of database browsing, suggesting how clustering tech-
niques and multidimensional scaling can be used to present
a database map to the user.
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