Fondazione Bruno Kessler - Technologies of Vision

contains material from
Template Matching Techniques in Computer Vision: Theory and Practice
Roberto Brunelli © 2009 John Wiley & Sons, Ltd

Bibliography

[1]   KA Abdikalikov, VK Zadiraka, OS Kondratenko, and SS Mel’nikova. Fast algorithms for estimating the correlation functions of large signals. Cybernetics and Systems Analysis, 27:414–419, 1991.

[2]   M Akra, L Bazzi, and S Mitter. Sampling of images for efficient model-based vision. IEEE Trans. on Pattern Analysis and Machine Intelligence, 21:4–11, 1999.
http://dx.doi.org/10.1109/34.745729.

[3]   VA Anisimov and ND Gorsky. Fast hierarchical matching of an arbitrarily oriented template. Pattern Recognition Letters, 14:95–101, 1993.
http://dx.doi.org/10.1016/0167-8655(93)90082-O.

[4]   MJ Atallah. Faster image template matching in the sum of the absolute value of differences measure. IEEE Trans. on Image processing, 10:659–663, 2001.
http://dx.doi.org/10.1109/83.913600.

[5]   G Ben-Artzi, H Hel-Or, and Y Hel-Or. The gray-code filter kernels. IEEE Trans. on Pattern Analysis and Machine Intelligence, 29:382–393, 2007.
http://dx.doi.org/10.1109/TPAMI.2007.62.

[6]   M Betke and NC Makris. Fast object recognition in noisy images using simulated annealing. In Proc. of the 5th International Conference on Computer Vision and Pattern Recognition (ICCV’95), pages 523–530, 1995.
http://dx.doi.org/10.1109/ICCV.1995.466895.

[7]   R Bogush, S Maltsev, S Ablameyko, S Uchida, and S Kamata. An efficient correlation computation method for binary images based on matrix factorisation. In Proc. of the 6th International Conference on Document Analysis and Recognition, pages 312–316, 2001.
http://dx.doi.org/10.1109/ICDAR.2001.953805.

[8]   G Bonmassar and EL Schwartz. Improved cross-correlation for template matching on the Laplacian pyramid. Pattern Recognition Letters, 19:765–770, 1998.
http://dx.doi.org/10.1016/S0167-8655(98)00056-7.

[9]   C-Y Chang, AA Maciejewski, and V Balakrishnan. Fast eigenspace decomposition of correlated images. IEEE Trans. on Image processing, 9:1937–1949, 2000.
http://dx.doi.org/10.1109/83.877214.

[10]   MS Choi and WY Kim. A novel two stage template matching method for rotation and illumination invariance. Pattern Recognition, 35:119–129, 2002.
http://dx.doi.org/10.1016/S0031-3203(01)00025-5.

[11]   S Derrode and F Ghorbel. Robust and efficient fourier-mellin transform approximations for gray-level image reconstruction and complete invariant description. Computer Vision and Image Understanding, 83:57–78, 2001.
http://dx.doi.org/10.1006/cviu.2001.0922.

[12]   L Di Stefano and S Mattoccia. Fast template matching using bounded partial correlation. Machine Vision and Applications, 13:213–221, 2003.
http://dx.doi.org/10.1007/s00138-002-0070-5.

[13]   L Di Stefano and S Mattoccia. A sufficient condition based on the Cauchy-Schwarz inequality for efficient template matching. In Proc. of the International Conference on Image Processing (ICIP’03), volume 1, pages 269–272, 2003.
http://dx.doi.org/10.1109/ICIP.2003.1246950.

[14]   L Di Stefano, S Mattoccia, and M Mola. An efficient algorithm for exhaustive template matching based on normalized cross correlation. In Proc. of the 12th International Conference on Image Analysis and Processing, pages 322–327, 2003.
http://dx.doi.org/10.1109/ICIAP.2003.1234070.

[15]   L Di Stefano, S Mattoccia, and F Tombari. Speeding-up NCC-based template matching using parallel multimedia instructions. In Proc. of the 7th International Workshop on Computer Architecture for Machine Perception, pages 193–197, 2005.
http://dx.doi.org/10.1109/CAMP.2005.49.

[16]   L Di Stefano, S Mattoccia, and F Tombari. ZNCC-based template matching using bounded partial correlation. Pattern Recognition Letters, 26:2129–2134, 2005.
http://dx.doi.org/10.1016/j.patrec.2005.03.022.

[17]   HM El-Bakry and Q Zhao. Fast pattern detection using normalized neural networks and cross-correlation in the frequency domain. EURASIP Journal on Applied Signal Processing, 2005:2054–2060, 2005.
http://dx.doi.org/10.1155/ASP.2005.2054.

[18]   M Elad, Y Hel-Or, and R Keshet. Pattern detection using a maximal rejection classifier. In Proc. of the 4th International Workshop on Visual Form, volume 2059 of Lecture Notes in Computer Science, pages 514–524. Springer, 2001.

[19]   M Elad, Y Hel-Or, and R Keshet. Rejection based classifier for face detection. Pattern Recognition Letters, 23:1459–1471, 2002.
http://dx.doi.org/10.1016/S0167-8655(02)00106-X.

[20]   L Essannouni, E Ibn-Elhaj, and D Aboutajdine. Fast cross-spectral image registration using new robust correlation. J. of Real-Time Image Processing, 1:123–129, 2006.
http://dx.doi.org/10.1007/s11554-006-0016-7.

[21]   K Fredriksson. Engineering efficient metric indexes. Pattern Recognition Letters, 28:75–84, 2007.
http://dx.doi.org/10.1016/j.patrec.2006.06.012.

[22]   K Fredriksson, V Mäkinen, and G Navarro. Rotation and lighting invariant template matching. Information and Computation, 205:1096–1113, 2006.
http://dx.doi.org/10.1016/j.ic.2007.03.002.

[23]   K Fredriksson, G Navarro, and E Ukkonen. Faster than FFT: Rotation Invariant Combinatorial Template Matching, volume 2, pages 75–112. Transworld Research Network, 2002.

[24]   K Fredriksson, G Navarro, and E Ukkonen. Optimal exact and fast approximate two dimensional pattern matching allowing rotations. In Proc. of the 13th Annual Symposium on Combinatorial Pattern Matching (CPM’02), volume 2373 of Lecture Notes in Computer Science, pages 235–248. Springer, 2002.

[25]   K Fredriksson and E Ukkonen. Faster template matching without FFT. In Proc. of the International Conference on Image Processing (ICIP’01), volume 1, pages 678–681, 2001.
http://dx.doi.org/10.1109/ICIP.2001.959136.

[26]   RW Frischholz and KP Spinnler. A class of algorithms for real-time subpixel registration. In Proc. of Europto Conference, 1993.

[27]   J Gause, PYK Cheung, and W Luk. Reconfigurable shape-adaptive template matching architectures. In Proc. of the 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pages 98–107, 2002.
http://dx.doi.org/10.1109/FPGA.2002.1106665.

[28]   DM Gavrila. Multi-feature hierarchical template matching using distance transforms. In Proc. of the 14th IAPR International Conference on Pattern Recognition (ICPR’98), volume 1, pages 439–444, 1998.
http://dx.doi.org/10.1109/ICPR.1998.711175.

[29]   M Gharavi-Alkhansari. A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Trans. on Image processing, 10:526–533, 2001.
http://dx.doi.org/10.1109/83.913587.

[30]   Y Hel-Or and H Hel-Or. Real-time pattern matching using projection kernels. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27:1430–1445, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.184.

[31]   AJ Hii, CE Hann, JG Chase, and EE Van Houten. Fast normalized cross correlation for motion tracking using basis functions. Computer Methods and Programs in Biomedicine, 82:144–156, 2006.
http://dx.doi.org/10.1016/j.cmpb.2006.02.007.

[32]   H-C Huang, Y-P Hung, and W-L Hwang. Adaptive early jump-out technique for fast motion estimation in video coding. In Proc. of the 13th IAPR International Conference on Pattern Recognition (ICPR’96), volume 2, pages 864–868, 1996.
http://dx.doi.org/10.1109/ICPR.1996.547199.

[33]   F Jurie and M Dhome. A simple and efficient template matching algorithm. In Proc. of the 8th International Conference on Computer Vision and Pattern Recognition (ICCV’01), pages 544–549, 2001.
http://dx.doi.org/10.1109/ICCV.2001.937673.

[34]   A Kadyrov and M Petrou. The invaders algorithm: Range of values modulation for accelerated correlation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28:1882–1886, 2006.
http://dx.doi.org/10.1109/TPAMI.2006.234.

[35]   T Kawanishi, T Kurozumi, K Kashino, and S Takagi. A fast template matching algorithm with adaptive skipping using inner-subtemplates’ distances. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’04), pages 654–657, 2004.
http://dx.doi.org/10.1109/ICPR.2004.1334614.

[36]   A Kohandani, O Basir, and M Kamel. A fast algorithm for template matching. In Proc. of the 3rd International Conference on Image Analysis and Recognition (ICIAR’06), volume 4142 of Lecture Notes in Computer Science, pages 398–409. Springer, 2006.
http://dx.doi.org/10.1007/11867661_36.

[37]   W Krattenthaler, KJ Mayer, and M Zeiller. Point correlation: a reduced-cost template matching technique. In Proc. of the International Conference on Image Processing (ICIP’94), volume 1, pages 208–212, 1994.
http://dx.doi.org/10.1109/ICIP.1994.413305.

[38]   ZD Lan and R Mohr. Direct linear sub-pixel correlation by incorporation of neighbor pixels’ information and robust estimation of window transformation. Machine Vision and Applications, 10:256–268, 1998.
http://dx.doi.org/10.1007/s001380050077.

[39]   MS Lew and TS Huang. Optimal multi-scale matching. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’99), volume 1, pages 1088–1093, 1999.
http://dx.doi.org/10.1109/CVPR.1999.786922.

[40]   JP Lewis. Fast template matching. In Proc. of Vision Interface, pages 120–123, 1995.

[41]   X Liang and JS-N Jean. Mapping of generalized template matching onto reconfigurable computers. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 11:485–498, 2003.
http://dx.doi.org/10.1109/TVLSI.2003.812306.

[42]   J MacLean and J Tsotsos. Fast pattern recognition using gradient-descent search in an image pyramid. In Proc. of the 15th IAPR International Conference on Pattern Recognition (ICPR’00), volume 2, pages 873–877, 2000.
http://dx.doi.org/10.1109/ICPR.2000.906213.

[43]   A Margalit and A Rosenfeld. Using feature probabilities to reduce the expected computational cost of template matching. Computer Vision, Graphics and Image Processing, 52:110–123, 1990.
http://dx.doi.org/10.1016/0734-189X(90)90125-F.

[44]   R Milanese, M Cherbuliez, and T Pun. Invariant content-based image retrieval using the Fourier-Mellin transform. In Proc. of the International Conference on Advances in Pattern Recognition, pages 73–82, 1998.

[45]   S Mukherji. Fast algorithms for binary cross-correlation. In Proc. of the IEEE International Geoscience and Remote Sensing Symposium, volume 1, pages 340–343, 2005.
http://dx.doi.org/10.1109/IGARSS.2005.1526177.

[46]   S Nagashima, T Aoki, T Higuchi, and K Kobayashi. A subpixel image matching technique using phase-only correlation. In Proc. of the International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS2006), pages 701–704, 2006.

[47]   H Okuda, M Hashimoto, K Sumi, and S Kaneko. Optimum motion estimation algorithm for fast and robust digital image stabilization. IEEE Trans. on Consumer Electronics, 52:276–280, 2006. This is the latest paper on HDTM - we need to check if previous references must be interted as well.
http://dx.doi.org/10.1109/SICE.2002.1195465.

[48]   Z Pan, AG Rust, and H Bolouri. Image redundancy reduction for neural network classification using discrete cosine transforms. In Proc. of the International Joint Conference on Neural Networks, volume 3, pages 149–154, 2000.
http://dx.doi.org/10.1109/IJCNN.2000.861296.

[49]   S. Perreault and P Hebert. Median filtering in constant time. IEEE Trans. on Image processing, 16:2389–2394, 2007.
http://dx.doi.org/10.1109/TIP.2007.902329.

[50]   BS Reddy and BN Chatterji. An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. on Image processing, 5:1266–1271, 1996.
http://dx.doi.org/10.1109/83.506761.

[51]   W Rucklidge. Efficient guaranteed search for gray-level patterns. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’97), pages 717–723, 1997.
http://dx.doi.org/10.1109/CVPR.1997.609405.

[52]   K Saitwal, AA Maciejewski, and RG Roberts. Fast eigenspace decomposition of correlated images using their low-resolution properties. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’04), volume 3, pages 2707–2712, 2004.
http://dx.doi.org/10.1109/IROS.2004.1389818.

[53]   S Sista, CA Bouman, and JP Allebach. Fast image search using a multiscale stochastic model. In Proc. of the International Conference on Image Processing (ICIP’95), volume 2, pages 23–26, 1995.
http://dx.doi.org/10.1109/ICIP.1995.537455.

[54]   VV Starovoitov, C Kose, and B Sankur. Generalized distance based matching of nonbinary images. In Proc. of the International Conference on Image Processing (ICIP’98), volume 1, pages 803–807, 1998.
http://dx.doi.org/10.1109/ICIP.1998.723632.

[55]   S Sun, H Park, DR Haynor, and Y Kim. Fast template matching using correlation-based adaptive predictive search. Int. J. of Imaging Systems and Technology, 13:169–178, 2003.
http://dx.doi.org/10.1002/ima.10055.

[56]   K Takita, T Aoki, Y Sasaki, T Higuchi, and K Kobayashi. High-accuracy subpixel image registration based on phase-only correlation. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, E86A:1925–1934, 2003.

[57]   F Tombari, S Mattoccia, and L Di Stefano. Template matching based on the lp norm using sufficient conditions with incremental approximations. In Proc. of the IEEE International Conference on Video and Signal Based Surveillance (AVSS’06), pages 20–20, 2006.
http://dx.doi.org/10.1109/AVSS.2006.110.

[58]   F Tombari, S Mattoccia, and L Di Stefano. Full search-equivalent pattern matching with incremental dissimilarity approximations. IEEE Trans. on Pattern Analysis and Machine Intelligence, 31:129–141, 2009.
http://dx.doi.org/10.1109/TPAMI.2008.46.

[59]   D-M Tsai and C-T Lin. Fast normalized cross correlation for defect detection. Pattern Recognition Letters, 24:2625–2631, 2003.
http://dx.doi.org/10.1016/S0167-8655(03)00106-5.

[60]   M Uenohara and T Kanade. Use of Fourier and Karhunen-Loeve decomposition for fast pattern matching with a large set of templates. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19:891–898, 1997.
http://dx.doi.org/10.1109/34.608291.

[61]   Y Wang, H Lu, and G Sun. A fast search algorithm for template matching based on inequality criterion. In Proc. of the 7th International Conference on Signal Processing, volume 2, pages 1211–1214, 2004.
http://dx.doi.org/10.1109/ICOSP.2004.1441542.

[62]   B Weiss. Fast median and bilateral filtering. ACM Transactions on Graphics, 25:519–526, 2006.
http://dx.doi.org/10.1145/1141911.1141918.

[63]   J Zhang, Z Ou, and H Wei. Fingerprint matching using phase-only correlation and Fourier-Mellin transforms. In Proc. of the Sixth International Conference on Intelligent Systems Designs and Applications, volume 2, pages 379–383, 2006.