Fondazione Bruno Kessler - Technologies of Vision
contains material from
Template Matching Techniques in Computer Vision: Theory and Practice
Roberto Brunelli © 2009 John Wiley & Sons, Ltd
[1] KA Abdikalikov, VK Zadiraka, OS Kondratenko, and SS Mel’nikova. Fast algorithms for estimating the correlation functions of large signals. Cybernetics and Systems Analysis, 27:414–419, 1991.
[2] M Akra, L Bazzi, and S Mitter. Sampling of images for efficient model-based vision.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 21:4–11, 1999.
http://dx.doi.org/10.1109/34.745729.
[3] VA Anisimov and ND Gorsky. Fast hierarchical matching of an arbitrarily oriented
template. Pattern Recognition Letters, 14:95–101, 1993.
http://dx.doi.org/10.1016/0167-8655(93)90082-O.
[4] MJ Atallah. Faster image template matching in the sum of the absolute value of
differences measure. IEEE Trans. on Image processing, 10:659–663, 2001.
http://dx.doi.org/10.1109/83.913600.
[5] G Ben-Artzi, H Hel-Or, and Y Hel-Or. The gray-code filter kernels. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 29:382–393, 2007.
http://dx.doi.org/10.1109/TPAMI.2007.62.
[6] M Betke and NC Makris. Fast object recognition in noisy images using simulated
annealing. In Proc. of the 5th International Conference on Computer Vision and Pattern
Recognition (ICCV’95), pages 523–530, 1995.
http://dx.doi.org/10.1109/ICCV.1995.466895.
[7] R Bogush, S Maltsev, S Ablameyko, S Uchida, and S Kamata. An efficient
correlation computation method for binary images based on matrix factorisation. In Proc.
of the 6th International Conference on Document Analysis and Recognition, pages 312–316,
2001.
http://dx.doi.org/10.1109/ICDAR.2001.953805.
[8] G Bonmassar and EL Schwartz. Improved cross-correlation for template matching on
the Laplacian pyramid. Pattern Recognition Letters, 19:765–770, 1998.
http://dx.doi.org/10.1016/S0167-8655(98)00056-7.
[9] C-Y Chang, AA Maciejewski, and V Balakrishnan. Fast eigenspace decomposition of
correlated images. IEEE Trans. on Image processing, 9:1937–1949, 2000.
http://dx.doi.org/10.1109/83.877214.
[10] MS Choi and WY Kim. A novel two stage template matching method for rotation and
illumination invariance. Pattern Recognition, 35:119–129, 2002.
http://dx.doi.org/10.1016/S0031-3203(01)00025-5.
[11] S Derrode and F Ghorbel. Robust and efficient fourier-mellin transform
approximations for gray-level image reconstruction and complete invariant description.
Computer Vision and Image Understanding, 83:57–78, 2001.
http://dx.doi.org/10.1006/cviu.2001.0922.
[12] L Di Stefano and S Mattoccia. Fast template matching using bounded partial
correlation. Machine Vision and Applications, 13:213–221, 2003.
http://dx.doi.org/10.1007/s00138-002-0070-5.
[13] L Di Stefano and S Mattoccia. A sufficient condition based on the Cauchy-Schwarz
inequality for efficient template matching. In Proc. of the International Conference on
Image Processing (ICIP’03), volume 1, pages 269–272, 2003.
http://dx.doi.org/10.1109/ICIP.2003.1246950.
[14] L Di Stefano, S Mattoccia, and M Mola. An efficient algorithm for exhaustive
template matching based on normalized cross correlation. In Proc. of the 12th International
Conference on Image Analysis and Processing, pages 322–327, 2003.
http://dx.doi.org/10.1109/ICIAP.2003.1234070.
[15] L Di Stefano, S Mattoccia, and F Tombari. Speeding-up NCC-based template
matching using parallel multimedia instructions. In Proc. of the 7th International Workshop
on Computer Architecture for Machine Perception, pages 193–197, 2005.
http://dx.doi.org/10.1109/CAMP.2005.49.
[16] L Di Stefano, S Mattoccia, and F Tombari. ZNCC-based template matching using
bounded partial correlation. Pattern Recognition Letters, 26:2129–2134, 2005.
http://dx.doi.org/10.1016/j.patrec.2005.03.022.
[17] HM El-Bakry and Q Zhao. Fast pattern detection using normalized neural networks
and cross-correlation in the frequency domain. EURASIP Journal on Applied Signal
Processing, 2005:2054–2060, 2005.
http://dx.doi.org/10.1155/ASP.2005.2054.
[18] M Elad, Y Hel-Or, and R Keshet. Pattern detection using a maximal rejection classifier. In Proc. of the 4th International Workshop on Visual Form, volume 2059 of Lecture Notes in Computer Science, pages 514–524. Springer, 2001.
[19] M Elad, Y Hel-Or, and R Keshet. Rejection based classifier for face detection. Pattern
Recognition Letters, 23:1459–1471, 2002.
http://dx.doi.org/10.1016/S0167-8655(02)00106-X.
[20] L Essannouni, E Ibn-Elhaj, and D Aboutajdine. Fast cross-spectral image registration
using new robust correlation. J. of Real-Time Image Processing, 1:123–129, 2006.
http://dx.doi.org/10.1007/s11554-006-0016-7.
[21] K Fredriksson. Engineering efficient metric indexes. Pattern Recognition Letters,
28:75–84, 2007.
http://dx.doi.org/10.1016/j.patrec.2006.06.012.
[22] K Fredriksson, V Mäkinen, and G Navarro. Rotation and lighting invariant template
matching. Information and Computation, 205:1096–1113, 2006.
http://dx.doi.org/10.1016/j.ic.2007.03.002.
[23] K Fredriksson, G Navarro, and E Ukkonen. Faster than FFT: Rotation Invariant Combinatorial Template Matching, volume 2, pages 75–112. Transworld Research Network, 2002.
[24] K Fredriksson, G Navarro, and E Ukkonen. Optimal exact and fast approximate two dimensional pattern matching allowing rotations. In Proc. of the 13th Annual Symposium on Combinatorial Pattern Matching (CPM’02), volume 2373 of Lecture Notes in Computer Science, pages 235–248. Springer, 2002.
[25] K Fredriksson and E Ukkonen. Faster template matching without FFT. In Proc. of
the International Conference on Image Processing (ICIP’01), volume 1, pages 678–681,
2001.
http://dx.doi.org/10.1109/ICIP.2001.959136.
[26] RW Frischholz and KP Spinnler. A class of algorithms for real-time subpixel registration. In Proc. of Europto Conference, 1993.
[27] J Gause, PYK Cheung, and W Luk. Reconfigurable shape-adaptive template matching
architectures. In Proc. of the 10th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 98–107, 2002.
http://dx.doi.org/10.1109/FPGA.2002.1106665.
[28] DM Gavrila. Multi-feature hierarchical template matching using distance transforms.
In Proc. of the 14th IAPR International Conference on Pattern Recognition (ICPR’98),
volume 1, pages 439–444, 1998.
http://dx.doi.org/10.1109/ICPR.1998.711175.
[29] M Gharavi-Alkhansari. A fast globally optimal algorithm for template matching using
low-resolution pruning. IEEE Trans. on Image processing, 10:526–533, 2001.
http://dx.doi.org/10.1109/83.913587.
[30] Y Hel-Or and H Hel-Or. Real-time pattern matching using projection kernels. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 27:1430–1445, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.184.
[31] AJ Hii, CE Hann, JG Chase, and EE Van Houten. Fast normalized cross correlation
for motion tracking using basis functions. Computer Methods and Programs in Biomedicine,
82:144–156, 2006.
http://dx.doi.org/10.1016/j.cmpb.2006.02.007.
[32] H-C Huang, Y-P Hung, and W-L Hwang. Adaptive early jump-out technique for fast
motion estimation in video coding. In Proc. of the 13th IAPR International Conference on
Pattern Recognition (ICPR’96), volume 2, pages 864–868, 1996.
http://dx.doi.org/10.1109/ICPR.1996.547199.
[33] F Jurie and M Dhome. A simple and efficient template matching algorithm. In Proc. of
the 8th International Conference on Computer Vision and Pattern Recognition (ICCV’01),
pages 544–549, 2001.
http://dx.doi.org/10.1109/ICCV.2001.937673.
[34] A Kadyrov and M Petrou. The invaders algorithm: Range of values modulation
for accelerated correlation. IEEE Trans. on Pattern Analysis and Machine Intelligence,
28:1882–1886, 2006.
http://dx.doi.org/10.1109/TPAMI.2006.234.
[35] T Kawanishi, T Kurozumi, K Kashino, and S Takagi. A fast template matching
algorithm with adaptive skipping using inner-subtemplates’ distances. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’04), pages 654–657, 2004.
http://dx.doi.org/10.1109/ICPR.2004.1334614.
[36] A Kohandani, O Basir, and M Kamel. A fast algorithm for template matching. In
Proc. of the 3rd International Conference on Image Analysis and Recognition (ICIAR’06),
volume 4142 of Lecture Notes in Computer Science, pages 398–409. Springer, 2006.
http://dx.doi.org/10.1007/11867661_36.
[37] W Krattenthaler, KJ Mayer, and M Zeiller. Point correlation: a reduced-cost template
matching technique. In Proc. of the International Conference on Image Processing
(ICIP’94), volume 1, pages 208–212, 1994.
http://dx.doi.org/10.1109/ICIP.1994.413305.
[38] ZD Lan and R Mohr. Direct linear sub-pixel correlation by incorporation of neighbor
pixels’ information and robust estimation of window transformation. Machine Vision and
Applications, 10:256–268, 1998.
http://dx.doi.org/10.1007/s001380050077.
[39] MS Lew and TS Huang. Optimal multi-scale matching. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’99), volume 1, pages
1088–1093, 1999.
http://dx.doi.org/10.1109/CVPR.1999.786922.
[40] JP Lewis. Fast template matching. In Proc. of Vision Interface, pages 120–123, 1995.
[41] X Liang and JS-N Jean. Mapping of generalized template matching onto reconfigurable
computers. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 11:485–498,
2003.
http://dx.doi.org/10.1109/TVLSI.2003.812306.
[42] J MacLean and J Tsotsos. Fast pattern recognition using gradient-descent search in an
image pyramid. In Proc. of the 15th IAPR International Conference on Pattern Recognition
(ICPR’00), volume 2, pages 873–877, 2000.
http://dx.doi.org/10.1109/ICPR.2000.906213.
[43] A Margalit and A Rosenfeld. Using feature probabilities to reduce the expected
computational cost of template matching. Computer Vision, Graphics and Image
Processing, 52:110–123, 1990.
http://dx.doi.org/10.1016/0734-189X(90)90125-F.
[44] R Milanese, M Cherbuliez, and T Pun. Invariant content-based image retrieval using the Fourier-Mellin transform. In Proc. of the International Conference on Advances in Pattern Recognition, pages 73–82, 1998.
[45] S Mukherji. Fast algorithms for binary cross-correlation. In Proc. of the IEEE
International Geoscience and Remote Sensing Symposium, volume 1, pages 340–343, 2005.
http://dx.doi.org/10.1109/IGARSS.2005.1526177.
[46] S Nagashima, T Aoki, T Higuchi, and K Kobayashi. A subpixel image matching technique using phase-only correlation. In Proc. of the International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS2006), pages 701–704, 2006.
[47] H Okuda, M Hashimoto, K Sumi, and S Kaneko. Optimum motion estimation
algorithm for fast and robust digital image stabilization. IEEE Trans. on Consumer
Electronics, 52:276–280, 2006. This is the latest paper on HDTM - we need to check if
previous references must be interted as well.
http://dx.doi.org/10.1109/SICE.2002.1195465.
[48] Z Pan, AG Rust, and H Bolouri. Image redundancy reduction for neural network
classification using discrete cosine transforms. In Proc. of the International Joint
Conference on Neural Networks, volume 3, pages 149–154, 2000.
http://dx.doi.org/10.1109/IJCNN.2000.861296.
[49] S. Perreault and P Hebert. Median filtering in constant time. IEEE Trans. on Image
processing, 16:2389–2394, 2007.
http://dx.doi.org/10.1109/TIP.2007.902329.
[50] BS Reddy and BN Chatterji. An fft-based technique for translation, rotation, and
scale-invariant image registration. IEEE Trans. on Image processing, 5:1266–1271, 1996.
http://dx.doi.org/10.1109/83.506761.
[51] W Rucklidge. Efficient guaranteed search for gray-level patterns. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’97), pages 717–723, 1997.
http://dx.doi.org/10.1109/CVPR.1997.609405.
[52] K Saitwal, AA Maciejewski, and RG Roberts. Fast eigenspace decomposition of
correlated images using their low-resolution properties. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’04), volume 3, pages
2707–2712, 2004.
http://dx.doi.org/10.1109/IROS.2004.1389818.
[53] S Sista, CA Bouman, and JP Allebach. Fast image search using a multiscale stochastic
model. In Proc. of the International Conference on Image Processing (ICIP’95), volume 2,
pages 23–26, 1995.
http://dx.doi.org/10.1109/ICIP.1995.537455.
[54] VV Starovoitov, C Kose, and B Sankur. Generalized distance based matching of
nonbinary images. In Proc. of the International Conference on Image Processing (ICIP’98),
volume 1, pages 803–807, 1998.
http://dx.doi.org/10.1109/ICIP.1998.723632.
[55] S Sun, H Park, DR Haynor, and Y Kim. Fast template matching using
correlation-based adaptive predictive search. Int. J. of Imaging Systems and Technology,
13:169–178, 2003.
http://dx.doi.org/10.1002/ima.10055.
[56] K Takita, T Aoki, Y Sasaki, T Higuchi, and K Kobayashi. High-accuracy subpixel image registration based on phase-only correlation. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, E86A:1925–1934, 2003.
[57] F Tombari, S Mattoccia, and L Di Stefano. Template matching based on the lp
norm using sufficient conditions with incremental approximations. In Proc. of the IEEE
International Conference on Video and Signal Based Surveillance (AVSS’06), pages 20–20,
2006.
http://dx.doi.org/10.1109/AVSS.2006.110.
[58] F Tombari, S Mattoccia, and L Di Stefano. Full search-equivalent pattern matching
with incremental dissimilarity approximations. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 31:129–141, 2009.
http://dx.doi.org/10.1109/TPAMI.2008.46.
[59] D-M Tsai and C-T Lin. Fast normalized cross correlation for defect detection. Pattern
Recognition Letters, 24:2625–2631, 2003.
http://dx.doi.org/10.1016/S0167-8655(03)00106-5.
[60] M Uenohara and T Kanade. Use of Fourier and Karhunen-Loeve decomposition for
fast pattern matching with a large set of templates. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 19:891–898, 1997.
http://dx.doi.org/10.1109/34.608291.
[61] Y Wang, H Lu, and G Sun. A fast search algorithm for template matching based on
inequality criterion. In Proc. of the 7th International Conference on Signal Processing,
volume 2, pages 1211–1214, 2004.
http://dx.doi.org/10.1109/ICOSP.2004.1441542.
[62] B Weiss. Fast median and bilateral filtering. ACM Transactions on Graphics,
25:519–526, 2006.
http://dx.doi.org/10.1145/1141911.1141918.
[63] J Zhang, Z Ou, and H Wei. Fingerprint matching using phase-only correlation and Fourier-Mellin transforms. In Proc. of the Sixth International Conference on Intelligent Systems Designs and Applications, volume 2, pages 379–383, 2006.