Fondazione Bruno Kessler - Technologies of Vision

contains material from
Template Matching Techniques in Computer Vision: Theory and Practice
Roberto Brunelli © 2009 John Wiley & Sons, Ltd

Bibliography

[1]   B Achermann and H Bunke. Classifying range images of human faces with the Hausdorff distance. In Proc. of the 15th IAPR International Conference on Pattern Recognition (ICPR’00), volume 2, pages 813–817, 2000.
http://dx.doi.org/10.1109/ICPR.2000.906199.

[2]   JL Alba, A Pujol, A Lopez, and JJ Villanueva. Improving shape-based face recognition by means of a supervised discriminant Hausdorff distance. In Proc. of the International Conference on Image Processing (ICIP’03), volume 3, pages 901–904, 2003.
http://dx.doi.org/10.1109/ICIP.2003.1247391.

[3]   E Baudrier, G Millon, F Nicolier, and S Ruan. A new similarity measure using Hausdorff distance map. In Proc. of the International Conference on Image Processing (ICIP’04), volume 1, pages 669–672, 2004.
http://dx.doi.org/10.1109/ICIP.2004.1418843.

[4]   E Baudrier, G Millon, F Nicolier, and S Ruan. A fast binary-image comparison method with local-dissimilarity quantification. In Proc. of the 18th IAPR International Conference on Pattern Recognition (ICPR’06), volume 3, pages 216–219, 2006.
http://dx.doi.org/10.1109/ICPR.2006.63.

[5]   G Borgefors. Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Trans. on Pattern Analysis and Machine Intelligence, 10:849–865, 1988.
http://dx.doi.org/10.1109/34.9107.

[6]   T Bossomaier and A Loeff. Parallel computation of the Hausdorff distance between images. Parallel Computing, 19:1129–1140, 1993.
http://dx.doi.org/10.1016/0167-8191(93)90022-D.

[7]   DE Cardoze and LJ Schulman. Pattern matching for spatial point sets. In Proc. of the 39th Annual Symposium on Foundations of Computer Science, pages 156–165, 1998.
http://dx.doi.org/10.1109/SFCS.1998.743439.

[8]   G Charpiat, O Faugeras, R Keriven, and P Maurel. Distance-based shape statistics. In Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’06), volume 5, pages 925–928, 2006.
http://dx.doi.org/10.1109/ICASSP.2006.1661428.

[9]   G Charpiat, OD Faugeras, and R Keriven. Shape metrics, warping and statistics. In Proc. of the International Conference on Image Processing (ICIP’03), volume 2, pages 627–630, 2003.
http://dx.doi.org/10.1109/ICIP.2003.1246758.

[10]   WP Choi, KM Lam, and WC Siu. Robust Hausdorff distance for shape matching. In Visual Communications and Image Processing 2002, volume 4671 of Proceedings of SPIE, pages 793–804, 2002.
http://dx.doi.org/10.1117/12.453123.

[11]   MP Dubuisson and AK Jain. A modified Hausdorff distance for object matching. In Proc. of the 12th IAPR International Conference on Pattern Recognition (ICPR’94), volume 1, pages 566–568, 1994.
http://dx.doi.org/10.1109/ICPR.1994.576361.

[12]   JH Dukesherer and CE Smith. A hybrid Hough-Hausdorff method for recognizing bicycles in natural scenes. In Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, volume 4, pages 2493–2498, 2001.
http://dx.doi.org/10.1109/ICSMC.2001.972932.

[13]   PF Felzenszwalb. Learning models for object recognition. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’01), volume 1, pages 1056–1062, 2001.
http://dx.doi.org/10.1109/CVPR.2001.990647.

[14]   Y Gao. Efficiently comparing face images using a modified Hausdorff distance. IEE Proceedings - Vision, Image and Signal Processing, 150:346–350, 2003.
http://dx.doi.org/10.1049/ip-vis:20030805.

[15]   Y Gao and MKH Leung. Face recognition using line edge map. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24:764–779, 2002.
http://dx.doi.org/10.1109/TPAMI.2002.1008383.

[16]   P Gastaldo and R Zunino. Hausdorff distance for robust and adaptive template selection in visual target detection. Electronic Letters, 38:1651–1653, 2002.
http://dx.doi.org/10.1049/el:20021179.

[17]   B Guo, KM Lam, KH Lin, and WC Siu. Human face recognition based on spatially weighted Hausdorff distance. Pattern Recognition Letters, 24:499–507, 2003.
http://dx.doi.org/10.1016/S0167-8655(02)00272-6.

[18]   M Hagedoorn and R Veltkamp. Metric pattern spaces. Technical Report 1999-03, Utrecht University, Information and Computing Sciences, 1999.

[19]   I Han, ID Yun, and SU Lee. Model-based object recognition using the Hausdorff distance with explicit pairing. In Proc. of the International Conference on Image Processing (ICIP’99), pages 83–87, 1999.
http://dx.doi.org/10.1109/ICIP.1999.819524.

[20]   Y Hu and Z Wang. A similarity measure based on Hausdorff distance for human face recognition. In Proc. of the 18th IAPR International Conference on Pattern Recognition (ICPR’06), volume 3, pages 1131–1134, 2006.
http://dx.doi.org/10.1109/ICPR.2006.174.

[21]   DP Huttenlocher, GA Klanderman, and WJ Rucklidge. Comparing images using the Hausdorff distance under translation. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’92), pages 654–656, 1992.
http://dx.doi.org/10.1109/CVPR.1992.223209.

[22]   DP Huttenlocher, GA Klanderman, and WJ Rucklidge. Comparing images using the Hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 15:850–863, 1993.
http://dx.doi.org/10.1109/34.232073.

[23]   DP Huttenlocher and WJ Rucklidge. Multi-resolution technique for comparing images using the Hausdorff distance. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’93), pages 705–706, 1993.
http://dx.doi.org/10.1109/CVPR.1993.341019.

[24]   SH Kim and RH Park. An efficient algorithm for video sequence matching using the modified Hausdorff distance and the directed divergence. IEEE Trans. on Circuits and Systems for Video Technology, 12:592–596, 2002.
http://dx.doi.org/10.1109/TCSVT.2002.800512.

[25]   R Klette and P Zamperoni. Measures of correspondence between binary patterns. Image and Vision Computing, 5:287–295, 1987.
http://dx.doi.org/10.1016/0262-8856(87)90005-9.

[26]   D Kottke and PD Fiore. Systolic array for acceleration of template based ATR. In Proc. of the International Conference on Image Processing (ICIP’97), pages 869–872, 1997.
http://dx.doi.org/10.1109/ICIP.1997.648104.

[27]   OK Kwon, DG Sim, and RH Park. New Hausdorff distances based on robust statistics for comparing images. In Proc. of the International Conference on Image Processing (ICIP’96), volume 3, pages 21–24, 1996.
http://dx.doi.org/10.1109/ICIP.1996.560359.

[28]   OK Kwon, DG Sim, and RH Park. Robust Hausdorff distance matching algorithms using pyramidal structures. Pattern Recognition, 34:2005–2013, 2001.
http://dx.doi.org/10.1016/S0031-3203(00)00132-1.

[29]   YH Lee and JC Shim. Curvature based human face recognition using depth weighted Hausdorff distance. In Proc. of the International Conference on Image Processing (ICIP’04), volume 3, pages 1429–1432, 2004.
http://dx.doi.org/10.1109/ICIP.2004.1421331.

[30]   F Li and MKH Leung. Hierarchical identification of palmprint using line-based Hough transform. In Proc. of the 18th IAPR International Conference on Pattern Recognition (ICPR’06), volume 4, pages 149–152, 2006.
http://dx.doi.org/10.1109/ICPR.2006.622.

[31]   KH Lin, KM Lam, and WC Siu. Spatially eigen-weighted Hausdorff distances for human face recognition. Pattern Recognition, 36:1827–1834, 2003.
http://dx.doi.org/10.1016/S0031-3203(03)00011-6.

[32]   DM Mount, NS Netanyahu, and J LeMoigne. Efficient algorithms for robust feature matching. Pattern Recognition, 32:17–38, 1999.
http://dx.doi.org/10.1016/S0031-3203(98)00086-7.

[33]   CF Olson. Maximum-likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24:853–857, 2002.
http://dx.doi.org/10.1109/TPAMI.2002.1008392.

[34]   S-C Park, S-H Lim, B-K Sin, and S-W Lee. Tracking non-rigid objects using probabilistic Hausdorff distance matching. Pattern Recognition, 38:2373–2384, 2005.
http://dx.doi.org/10.1016/j.patcog.2005.01.015.

[35]   TD Russ, MW Koch, and CQ Little. A 2D range Hausdorff approach for 3D face recognition. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 3, page 169, 2005.
http://dx.doi.org/10.1109/CVPR.2005.561.

[36]   DG Sim, OK Kwon, and RH Park. Object matching algorithms using robust Hausdorff distance measures. IEEE Trans. on Image processing, 8:425–429, 1999.
http://dx.doi.org/10.1109/83.748897.

[37]   S Srisuk and W Kurutach. New robust Hausdorff distance-based face detection. In Proc. of the International Conference on Image Processing (ICIP’01), volume 1, pages 1022–1025, 2001.
http://dx.doi.org/10.1109/ICIP.2001.959222.

[38]   S Srisuk, M Petrou, W Kurutach, and A Kadyrov. Face authentication using the trace transform. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), volume 1, pages 305–312, 2003.
http://dx.doi.org/10.1109/CVPR.2003.1211368.

[39]   G Su, Y Shang, C Du, and J Wang. A multimodal and multistage face recognition method for simulated portrait. In Proc. of the 18th IAPR International Conference on Pattern Recognition (ICPR’06), volume 3, pages 1013–1017, 2006.
http://dx.doi.org/10.1109/ICPR.2006.108.

[40]   Barnabás Takács. Comparing face images using the modified Hausdorff distance. Pattern Recognition, 31:1873–1881, 1998.
http://dx.doi.org/10.1016/S0031-3203(98)00076-4.

[41]   A Thayananthan, B Stenger, PHS Torr, and R Cipolla. Shape context and chamfer matching in cluttered scenes. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), volume 1, pages 127–133, 2003.
http://dx.doi.org/10.1109/CVPR.2003.1211346.

[42]   L Tian and SI Kamata. An efficient algorithm for point matching using Hilbert scanning distance. In Proc. of the 18th IAPR International Conference on Pattern Recognition (ICPR’06), volume 3, pages 873–876, 2006.
http://dx.doi.org/10.1109/ICPR.2006.237.

[43]   EP Vivek and N Sudha. Robust Hausdorff distance measure for face recognition. Pattern Recognition, 40:431–442, 2007.
http://dx.doi.org/10.1016/j.patcog.2006.04.019.

[44]   Y Wang and G Baciu. Robust object matching using a modified version of the Hausdorff measure. Int. J. of Image and Graphics, 2:361–374, 2002.
http://dx.doi.org/10.1142/S0219467802000688.

[45]   Y Wang and CS Chua. Robust face recognition from 2D and 3D images using structural Hausdorff distance. Image and Vision Computing, 24:176–185, 2006.
http://dx.doi.org/10.1016/j.imavis.2005.09.025.

[46]   CHT Yang, SH Lai, and LW Chang. Hybrid image matching combining Hausdorff distance with normalized gradient matching. Pattern Recognition, 40:1173–1181, 2007.
http://dx.doi.org/10.1016/j.patcog.2006.09.014.

[47]   QZ Ye. The signed euclidean transform and its applications. In Proc. of the 19th IAPR International Conference on Pattern Recognition (ICPR’88), volume 1, pages 495–499, 1988.

[48]   X Yi and OI Camps. Line feature-based recognition using Hausdorff distance. In Proc. of the IEEE Symposium on Computer Vision, pages 79–84, 1995.
http://dx.doi.org/10.1109/ISCV.1995.476981.

[49]   X Yi and OI Camps. Robust occluding contour detection using the Hausdorff distance. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’97), pages 962–968, 1997.
http://dx.doi.org/10.1109/CVPR.1997.609444.

[50]   X Yi and OI Camps. Line-based recognition using a multidimensional Hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 21:901–916, 1999.
http://dx.doi.org/10.1109/34.790430.

[51]   E Yoruk, E Konukoglu, B Sankur, and J Darbon. Shape-based hand recognition. IEEE Trans. on Image processing, 15:1803–1815, 2006.
http://dx.doi.org/10.1109/TIP.2006.873439.

[52]   J You, P Bhattacharya, and S Hungenahally. Real-time object recognition: Hierarchical image matching in a parallel virtual machine environment. In Proc. of the 14th IAPR International Conference on Pattern Recognition (ICPR’98), volume 1, pages 275–277, 1998.
http://dx.doi.org/10.1109/ICPR.1998.711134.

[53]   X Yu and MKH Leung. Shape recognition using curve segment Hausdorff distance. In Proc. of the 18th IAPR International Conference on Pattern Recognition (ICPR’06), volume 3, pages 441–444, 2006.
http://dx.doi.org/10.1109/ICPR.2006.1050.

[54]   C Zhao, W Shi, and Y Deng. A new Hausdorff distance for image matching. Pattern Recognition Letters, 26:581–586, 2005.
http://dx.doi.org/10.1016/j.patrec.2004.09.022.

[55]   Z Zhu, H Lu, and Z Li. Novel object recognition based on hypothesis generation and verification. In Proc. of the 3rd International Conference on Image and Graphics (ICIG’04), pages 88–91, 2004.
http://dx.doi.org/10.1109/ICIG.2004.106.

[56]   Z Zhu, M Tang, and H Lu. A new robust circular Gabor based object matching by using weighted Hausdorff distance. Pattern Recognition Letters, 25:515–523, 2004.
http://dx.doi.org/10.1016/j.patrec.2003.12.014.