Fondazione Bruno Kessler - Technologies of Vision

contains material from
Template Matching Techniques in Computer Vision: Theory and Practice
Roberto Brunelli © 2009 John Wiley & Sons, Ltd

Bibliography

[1]   S Baker and SK Nayar. A theory of single-viewpoint catadioptric image formation. Int. J. of Computer Vision, pages 175–196, 1999.
http://dx.doi.org/10.1023/A:1008128724364.

[2]   S Baker and SK Nayar. Single viewpoint catadioptric cameras. In Panoramic Vision: Sensors, Theory and Applications, Monographs in Computer Science, pages 39–71. Springer, 2001.

[3]   RV Baltz. Photons and Photon Statistics: from Incandescent Light to Lasers. In B di Bartolo and O Forte, editors, Frontiers of Optical Spectroscopy: Investigating Extreme Physical Conditions with Advanced Optical Techniques, 2005.

[4]   M Ben-Ezra, A Zomet, and SK Nayar. Jitter camera: high resolution video from a low resolution detector. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’04), volume 2, pages 135–142, 2004.
http://dx.doi.org/10.1109/CVPR.2004.1315155.

[5]   M Ben-Ezra, A Zomet, and SK Nayar. Video super-resolution using controlled subpixel detector shifts. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27:977–987, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.129.

[6]   W Bialek. Physical limits to sensation and perception. Annual Review of Biophysics and Biophysical Chemistry, 16:455–478, 1987.
http://dx.doi.org/10.1146/annurev.bb.16.060187.002323.

[7]   G Bonmassar and EL Schwartz. Space-variant Fourier analysis: the exponential chirp transform. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19:1080–1089, 1997.
http://dx.doi.org/10.1109/34.625108.

[8]   DL Cowles, JR Van Dolson, LR Hainey, and DM Dick. The use of different eye regions in the mantis shrimp hemisquilla californiensis stephenson, 1967 (crustacea: Stomatopoda) for detecting objects. J. of Experimental Marine Biology and Ecology, 2:528–534, 2006.
http://dx.doi.org/10.1016/j.jembe.2005.09.016.

[9]   TW Cronin and J Marshall. Parallel processing and image analysis in the eyes of mantis shrimps. Biological Bulletin, 200:177–183, 2001.

[10]   M Deering. A photon accurate model of the human eye. ACM Transactions on Graphics, 24:649–658, 2005.
http://dx.doi.org/10.1145/1073204.1073243.

[11]   A El Gamal and H Eltoukhy. CMOS image sensors. IEEE Circuits and Devices Magazine, 21:6–20, 2005.

[12]   NJ Emery. The eyes have it: the neuroethology, function and evolution of social gaze. Neuroscience and Biobehavioral Reviews, 24:581–604, 2000.
http://dx.doi.org/10.1016/S0149-7634(00)00025-7.

[13]   H Faraji and WJ MacLean. CCD noise removal in digital images. IEEE Trans. on Image processing, 15:2676–26865, 2006a.
http://dx.doi.org/10.1109/TIP.2006.877363.

[14]   AF Fercher, CK Hitzenberger, M Sticker, E Moreno-Barriuso R Leitgeb, W Drexler, and K Sattmann. A thermal light source technique for optical coherence tomography. Optics Communications, 185:57–64, 2000.
http://dx.doi.org/10.1016/S0030-4018(00)00986-X.

[15]   RN Fernald. Evolution of eyes. Current Opinion in Neurobiology, 10:444–450, 2000.
http://dx.doi.org/10.1146/annurev.ne.15.030192.000245.

[16]   J Gaspar, C Decco, J Okamoto, and J Santos-Victor. Constant resolution omnidirectional cameras. In Proc. of the 3rd Workshop on Omnidirectional Vision, pages 27–34, 2002.
http://dx.doi.org/10.1109/OMNVIS.2002.1044487.

[17]   KR Gegenfurtner and DC Kiper. Color vision. Annual Review of Neuroscience, 26:181–206, 2003.
http://dx.doi.org/10.1146/annurev.neuro.26.041002.131116.

[18]   P Gravel, G Beaudoin, and JA De Guise. A method for modeling noise in medical images. IEEE Trans. on Medical Imaging, 23:1221–1232, 2004.
http://dx.doi.org/10.1109/TMI.2004.832656.

[19]   G Halder, P Callaerts, and WJ Gehring. New perspectives on eye evolution. Current Opinion in Genetics & Development, 5:602–609, 1995.
http://dx.doi.org/10.1093/jhered/esi027.

[20]   E Hecht. Optics. Addison-Wesley, 2nd edition, 1987.

[21]   HT Hytti. Characterization of digital image noise properties based on RAW data. In Image Quality and System Performance III, volume 6059 of Proceedings of SPIE, 2005.

[22]   SG Kong, J Heo, F Boughorbel, Y Zheng, BR Abidi, A Koschan, M Yi, and MA Abidi. Multiscale fusion of visible and thermal IR images for illumination-invariant face recognition. Int. J. of Computer Vision, 71:215–233, 2007.
http://dx.doi.org/10.1007/s11263-006-6655-0.

[23]   MF Land. Visual acuity in insects. Annual Review of Entomology, 42:147–177, 1997.
http://dx.doi.org/10.1146/annurev.ento.42.1.147.

[24]   C Liu, WT Freeman, R Szeliski, and SB Kang. Noise estimation from a single image. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 1, pages 901–908, 2006.
http://dx.doi.org/10.1109/CVPR.2006.207.

[25]   RM Mersereau. The processing of hexagonally sampled two-dimensional signals. Proceedings of the IEEE, 67:930–949, 1979.

[26]   G Metta, A Gasteratos, and G Sandini. Learning to track colored objects with log-polar vision. Mechatronics, 14:989–1006, 2004.
http://dx.doi.org/10.1016/j.mechatronics.2004.05.003.

[27]   SK Nayar and V Branzoi. Adaptive dynamic range imaging: Optical control of pixel exposures over space and time. Proc. of the 9th International Conference on Computer Vision and Pattern Recognition (ICCV’03), 2:1168–1175, 2003.
http://dx.doi.org/10.1109/ICCV.2003.1238624.

[28]   SK Nayar, V Branzoi, and TE Boult. Programmable imaging: Towards a flexible camera. Int. J. of Computer Vision, 70:7–22, 2006.
http://dx.doi.org/10.1007/s11263-005-3102-6.

[29]   K Nishino and SK Nayar. Corneal imaging system: Environment from eyes. Int. J. of Computer Vision, 70:23–40, 2006.
http://dx.doi.org/10.1007/s11263-006-6274-9.

[30]   Z Pan, G Healey, M Prasad, and B Tromberg. Face recognition in hyperspectral images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 25:1552–1560, 2003.
http://dx.doi.org/10.1109/TPAMI.2003.1251148.

[31]   RJ Pumphrey. The theory of the fovea. J. of Experimental Biology, 25:299–312, 1948.

[32]   AS Rojer and EL Schwartz. Design considerations for a space-variant visual sensor with complex-logarithmic geometry. In Proc. of the 15th IAPR International Conference on Pattern Recognition (ICPR’00), volume 2, pages 278–285, 1990.
http://dx.doi.org/10.1109/ICPR.1990.119370.

[33]   A Roorda and DR Williams. The arrangement of the three cone classes in the living human retina. Nature, 397:520–522, 1999.

[34]   G Sandini, J Santos-Victor, T Pajdla, and F Berton. Omniviews: direct omnidirectional imaging based on a retina-like sensor. In Proc. of IEEE Sensors, volume 1, pages 27–30, 2002.
http://dx.doi.org/10.1109/ICSENS.2002.1036981.

[35]   G Shama and HJ Trussell. Digital color imaging. IEEE Trans. on Image processing, 6:901–932, 1997.

[36]   VJ Traver, A Bernardino, P Moreno, and J Santos-Victor. Appearance-based object detection in space-variant images: A multi-model approach. In Proc. of the International Conference on Image Analysis and Recognition, volume 3212 of Lecture Notes in Computer Science, pages 538–546. Springer, 2004.
http://dx.doi.org/10.1007/b100437.

[37]   VJ Traver and F Pla. Dealing with 2D translation estimation in log-polar imagery. Image and Vision Computing, 21:145–160, 2003.
http://dx.doi.org/10.1016/S0262-8856(02)00150-6.

[38]   VA Tucker. The deep fovea, sideways vision and spiral flight paths in raptors. J. of Experimental Biology, 203:3745–3754, 2000.

[39]   JD van Ouwerkerk. Image super-resolution survey. Image and Vision Computing, 24:1039–1052, 2006.
http://dx.doi.org/10.1016/j.imavis.2006.02.026.

[40]   R Volkel, M Eisner, and KJ Weible. Miniaturized imaging systems. Microelectronic Engineering, 67-68:461–472, 2003.
http://dx.doi.org/10.1016/S0167-9317(03)00102-3.

[41]   RS Wallace, PW Ong, BB Bederson, and EL Schwartz. Space variant image processing. Int. J. of Computer Vision, 13:71–90, 1994.
http://dx.doi.org/10.1007/BF01420796.

[42]   M Watanabe and SK Nayar. Telecentric optics for focus analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19:1360–1365, 1997.
http://dx.doi.org/10.1109/34.643894.

[43]   LB Wolff. Polarization vision: a new sensory approach to image understanding. Image and Vision Computing, 15:81–93, 1995.
http://dx.doi.org/10.1016/S0262-8856(96)01123-7.

[44]   A Yeung and N Barnes. Efficient active monocular fixation using the log-polar sensor. Int. J. of Intelligent Systems Technologies and Applications, 1:157–173, 2005.
http://dx.doi.org/10.1504/IJISTA.2005.007313.