Fondazione Bruno Kessler - Technologies of Vision

contains material from
Template Matching Techniques in Computer Vision: Theory and Practice
Roberto Brunelli © 2009 John Wiley & Sons, Ltd

Bibliography

[1]   AC Brandwein and WE Strawderman. Stein estimation: The spherically symmetric case. Statistical Science, 5:356–369, 1990.
http://dx.doi.org/10.1214/ss/1177012104.

[2]   R Brunelli and T Poggio. Template matching: Matched spatial filters and beyond. Pattern Recognition, 30:751–768, 1997.
http://dx.doi.org/10.1016/S0031-3203(96)00104-5.

[3]   B Efron and C Morris. Stein’s estimation rule and its competitors - an empirical Bayes approach. J. of the American Statistical Association, 68:117–130, 1973.
http://dx.doi.org/10.2307/2284155.

[4]   B Efron and C Morris. Data analysis using Stein’s estimator and its generalizations. J. of the American Statistical Association, 70:311–319, 1975.
http://dx.doi.org/10.2307/2285814.

[5]   JH Friedman. Regularized discriminant analysis. J. of the American Statistical Association, 84(405):165–175, 1987.
http://dx.doi.org/10.2307/2289860.

[6]   RV Hogg and AT Craig. Introduction to Mathematical Statistics. Macmillan, 1978.

[7]   O Ledoit and M Wolf. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10:603–621, 2002.
http://dx.doi.org/10.1016/S0927-5398(03)00007-0.

[8]   Mathematical Society of Japan. Encyclopedic Dictionary of Mathematics. MIT Press, 2 edition, 1993.

[9]   TK Moon and WC Stirling. Mathematical Methods and Algorithms for Signal Processing. Prentice-Hall, 2000.

[10]   J Piper, I Poole, and A Carothers. Stein’s paradox and improved quadratic discrimination of real and simulated data by covariance weighting. In Proc. of the 12th IAPR International Conference on Pattern Recognition (ICPR’94), volume 2, pages 529–532, 1994.
http://dx.doi.org/10.1109/ICPR.1994.577004.

[11]   J Schafer and K Strimmer. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4, 2005.
http://dx.doi.org/10.2202/1544-6115.1175.

[12]   DW Zimmerman, BD Zumbo, and RH Williams. Bias in estimation and hypothesis testing of correlation. Psicologica, 24:133–158, 2003.