Fondazione Bruno Kessler - Technologies of Vision

contains material from
Template Matching Techniques in Computer Vision: Theory and Practice
Roberto Brunelli © 2009 John Wiley & Sons, Ltd

Bibliography

[1]   DN Bhat. An evolutionary measure for image matching. In Proc. of the 14th IAPR International Conference on Pattern Recognition (ICPR’98), volume 1, pages 850–852, 1998.
http://dx.doi.org/10.1109/ICPR.1998.711283.

[2]   T Boult. Robust distance measures for face-recognition supporting revocable biometric tokens. In Proc. of the 7th International Conference on Automatic Face and Gesture Recognition (FG’06), pages 560–566, 2006.
http://dx.doi.org/10.1109/FGR.2006.94.

[3]   R Brunelli and S Messelodi. Robust estimation of correlation with applications to computer vision. Pattern Recognition, 28:833–841, 1995.
http://dx.doi.org/10.1016/0031-3203(94)00170-Q.

[4]   S Chambon and A Crouzil. Dense matching using correlation: new measures that are robust near occlusions. In Proc. of the British Machine Vision Conference (BMVC’03), volume 1, pages 143–152, 2003.

[5]   S Chambon and A Crouzil. Towards correlation-based matching algorithms that are robust near occlusions. In Proc. of the 17th IAPR International Conference on Pattern Recognition (ICPR’04), volume 3, pages 20–23, 2004.
http://dx.doi.org/10.1109/ICPR.2004.1334459.

[6]   J-H Chen, C-S Chen, and Y-S Chen. Fast algorithm for robust template matching with M-estimators. IEEE Trans. on Signal Processing, 51:230–243, 2003.
http://dx.doi.org/10.1109/TSP.2002.806551.

[7]   S Copt and MP Victoria-Feser. Fast algorithms for computing high breakdown covariance matrices with missing data. In Theory and Applications of Recent Robust Methods, pages 71–82. Birkhauser, 2004.

[8]   C Croux and C Dehon. Robustness versus efficiency for nonparametric correlation measures. ECARES Working Papers 2008_002, Université Libre de Bruxelles, Ecares, 2008.

[9]   PL Davies and U Gather. Breakdown and groups (with rejoinder). Annals of Statistics, 33:977–1035, 2005.
http://dx.doi.org/10.1214/009053604000001138.

[10]   MP Eklund, AA Farag, and MT El-Melegy. Robust correspondence methods for stereo vision. Int. J. of Pattern Recognition and Artificial Intelligence, 17:1059–1079, 2003.
http://dx.doi.org/10.1142/S0218001403002861.

[11]   S Fidler, D Skocaj, and A Leonardis. Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28:337–350, 2006.
http://dx.doi.org/10.1109/TPAMI.2006.46.

[12]   AJ Fitch, A Kadyrov, WJ Christmas, and J Kittler. Fast robust correlation. IEEE Trans. on Image processing, 14:1063–1073, 2005.
http://dx.doi.org/10.1109/TIP.2005.849767.

[13]   R Gnanadesikan and JR Kettenring. Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics, 28:81–124, 1972.

[14]   FR Hampel. The influence curve and its role in robust estimation. J. of the American Statistical Association, 69:383–393, 1974.
http://dx.doi.org/10.2307/2285666.

[15]   FR Hampel, PJ Rousseeuw, EM Ronchetti, and WA Stahel. Robust statistics: the approach based on influence functions. J. Wiley & Sons, 1986.

[16]   PJ Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35:73–101, 1964.

[17]   PJ Huber. Robust statistics. J. Wiley & Sons, New-York, 1981.

[18]   S Kaneko, I Murase, and S Igarashi. Robust image registration by increment sign correlation. Pattern Recognition, 35:2223–2234, 2002.
http://dx.doi.org/10.1016/S0031-3203(01)00177-7.

[19]   S Kaneko, Y Satoh, and S Igarashi. Using selective correlation coefficient for robust image registration. Pattern Recognition, 36:1165–1173, 2003.
http://dx.doi.org/10.1016/S0031-3203(02)00081-X.

[20]   Y Keller, A Averbuch, and O Miller. Robust phase correlation. In Proc. of the 17th IAPR International Conference on Pattern Recognition (ICPR’04), volume 2, pages 740–743, 2004.
http://dx.doi.org/10.1109/ICPR.2004.1334365.

[21]   M Khosravi and RW Schafer. Low complexity matching criteria for image/video applications. In Proc. of the International Conference on Image Processing (ICIP’94), volume 3, pages 776–780, 1994.
http://dx.doi.org/10.1109/ICIP.1994.413783.

[22]   J Kim and JA Fessler. Intensity-based image registration using robust correlation coefficients. IEEE Trans. on Medical Imaging, 23:1430–1444, 2004.
http://dx.doi.org/10.1109/TMI.2004.835313.

[23]   Z-D Lan, R Mohr, and P Remagnino. Robust matching by partial correlation. In Proc. of the British Machine Vision Conference (BMVC’95), volume 2, pages 651–660, 1995.

[24]   ZD Lan and R Mohr. Robust location based partial correlation. In Proc. of the International Conference on Computer Analysis of Images and Patterns, volume 1296 of Lecture Notes in Computer Science, pages 313–320. Springer, 1997.
http://dx.doi.org/10.1007/3-540-63460-6_132.

[25]   ZD Lan and R Mohr. Direct linear sub-pixel correlation by incorporation of neighbor pixels’ information and robust estimation of window transformation. Machine Vision and Applications, 10:256–268, 1998.
http://dx.doi.org/10.1007/s001380050077.

[26]   RA Maronna and RH Zamar. Robust estimates of location and dispersion for high-dimensional datasets. Technometrics, 44:307–317, 2002.
http://dx.doi.org/10.1198/004017002188618509.

[27]   C Menard. Robust Stereo and Adaptive Matching in Correlation Scale-Space. PhD thesis, Institute of Automation, Vienna University of Technology, 1997.

[28]   T Mita, T Kaneko, and O Hori. A probabilistic approach to fast and robust template matching and its application to object categorization. In Proc. of the 18th IAPR International Conference on Pattern Recognition (ICPR’06), volume 2, pages 597–601, 2006.
http://dx.doi.org/10.1109/ICPR.2006.153.

[29]   I Mizera and C Muller. Breakdown points of Cauchy regression-scale estimators. Statistics & Probability Letters, 57:79–89, 2002.
http://dx.doi.org/10.1016/S0167-7152(02)00057-3.

[30]   C Muller. Redescending M-estimators in regression analysis, cluster analysis and image analysis. Discussiones Mathematicae - Probability and Statistics, 24:59–75, 2004.

[31]   H Okuda, M Hashimoto, and K Sumi. Robust picture matching using optimum selection of partial template. In Proc. of the 41st SICE Annual Conference (SICE’02), volume 1, pages 550–552, 2002.
http://dx.doi.org/10.1109/SICE.2002.1195465.

[32]   HV Poor. Robust matched filters. IEEE Trans. on Information Theory, 29:677–687, 1983.

[33]   WJJ Rey. Robust statistical methods, volume 690 of Lecture Notes in Mathematics. Springer, 1978.

[34]   N Sebe, MS Lew, and DP Huijsmans. Toward improved ranking metrics. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22:1132–1143, 2000.
http://dx.doi.org/10.1109/34.879793.

[35]   GL Shevlyakov and NO Vilchevski. Minimax variance estimation of a correlation coefficient for ϵ-contaminated bivariate normal distributions. Statistics and Probability Letters, 57:91–100, 2002.
http://dx.doi.org/10.1016/S0167-7152(02)00058-5.

[36]   CV Stewart. Bias in robust estimation caused by discontinuities and multiple structures. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19:818–833, 1997.
http://dx.doi.org/10.1109/34.608280.

[37]   CV Stewart. Robust parameter estimation in computer vision. SIAM Review, 41:513–537, 1999.
http://dx.doi.org/10.1137/S0036144598345802.

[38]   J Zhen, A Balasuriya, and S Challa. Target tracking with Bayesian fusion based template matching. In Proc. of the International Conference on Image Processing (ICIP’05), volume 2, pages 826–829, 2005.
http://dx.doi.org/10.1109/ICIP.2005.1530183.

[39]   G Zheng and R Modarres. A robust estimate of the correlation coefficient for bivariate normal distribution using ranked set sampling. J. of Statistical Planning and Inference, 136:298–309, 2006.
http://dx.doi.org/10.1016/j.jspi.2004.06.006.