Fondazione Bruno Kessler - Technologies of Vision

contains material from
Template Matching Techniques in Computer Vision: Theory and Practice
Roberto Brunelli © 2009 John Wiley & Sons, Ltd

Bibliography

[1]   EEAA Abusham, D Ngo, and A Teoh. Comparing the performance of Principal Component Analysis and RBF network for face recognition using locally linear embedding. Int. J. of Computer Science and Network Security, 6(4):25–29, 2006.

[2]   G Antonini, V Popovici, and JP Thiran. Independent component analysis and support vector machine for face feature extraction. In Proc. of the 4th International Conference on Audio-and Video-Based Biometric Person Authentication, volume 2688 of Lecture Notes in Computer Science, pages 111–118. Springer, 2003.

[3]   BJ Balas and P Sinha. Dissociated dipoles: Image representation via non-local comparisons. Technical Report CBCL-229, MIT Artificial Intelligence Laboratory, 2003.

[4]   MS Bartlett, JR Movellan, and TJ Sejnowski. Face recognition by independent component analysis. IEEE Trans. on Neural Networks, 13:1450–1464, 2002.
http://dx.doi.org/10.1109/TNN.2002.804287.

[5]   MS Bartlett and TJ Sejnowski. Viewpoint invariant face recognition using independent component analysis and attractor networks. In Proc. of Advances in Neural Information Processing Systems, volume 9, pages 817–823, 1997.

[6]   CM Bishop. Bayesian PCA. In Proc. of Advances in Neural Information Processing Systems, volume 11, pages 382–388, 1999.

[7]   AM Bronstein, MM Bronstein, and R Kimmel. Three-dimensional face recognition. Int. J. of Computer Vision, 64:5–30, 2005.
http://dx.doi.org/10.1007/s11263-005-1085-y.

[8]   R Brunelli and O Mich. Image retrieval by examples. IEEE Trans. on Multimedia, 2:164–171, 2000.
http://dx.doi.org/10.1109/6046.865481.

[9]   R Brunelli and O Mich. Histograms analysis for image retrieval. Pattern Recognition, 34:1625–1637, 2001.
http://dx.doi.org/10.1016/S0031-3203(00)00054-6.

[10]   R Cappelli, D Maio, and D Maltoni. Multispace KL for pattern representation and classification. IEEE Trans. on Pattern Analysis and Machine Intelligence, 23:977–996, 2001.
http://dx.doi.org/10.1109/34.955111.

[11]   H Chen. Principal component analysis with missing data and outliers. Technical report, Rutgers University, 2002.

[12]   C Chennubhotla and A Jepson. Sparse PCA. extracting multi-scale structure from data. In Proc. of the 8th International Conference on Computer Vision and Pattern Recognition (ICCV’01), volume 1, pages 641–647, 2001.
http://dx.doi.org/10.1109/ICCV.2001.937579.

[13]   F De la Torre and MJ Black. Robust principal component analysis for computer vision. In Proc. of the 8th International Conference on Computer Vision and Pattern Recognition (ICCV’01), volume 1, pages 362–369, 2001.
http://dx.doi.org/10.1109/ICCV.2001.937541.

[14]   F De la Torre and MJ Black. A framework for robust subspace learning. Int. J. of Computer Vision, 54:117–142, 2003.
http://dx.doi.org/10.1023/A:1023709501986.

[15]   F De la Torre and MJ Black. Robust parameterized component analysis: theory and applications to 2D facial appearance models. Computer Vision and Image Understanding, 91:53–71, 2003.
http://dx.doi.org/10.1016/S1077-3142(03)00076-6.

[16]   K Delac, M Grgic, and S Grgic. Independent comparative study of PCA, ICA, and LDA on the FERET data set. International Journal of Imaging Systems and Technology, 15:252–260, 2005.
http://dx.doi.org/10.1002/ima.20059.

[17]   K Delac, M Grgic, and S Grgic. Independent Comparative Study of PCA, ICA, and LDA on the FERET Data Set. Int J Imaging Syst Technol, 15:252–260, 2006.
http://dx.doi.org/10.1002/ima.20059.

[18]   HK Ekenel and B Sankur. Feature selection in the independent component subspace for face recognition. Pattern Recognition Letters, 25:1377–1388, 2004.
http://dx.doi.org/10.1016/j.patrec.2004.05.013.

[19]   RM Everson and L Sirovich. The Karhunen-Loeve transform for incomplete data. J. of the Optical Society of America A, 12:1657–1664, 1995.

[20]   S Fidler and A Leonardis. Robust LDA classification by subsampling. In Proc. of the Conference on Computer Vision and Pattern Recognition Workshop, page 97, 2003.
http://dx.doi.org/10.1109/CVPRW.2003.10089.

[21]   JH Friedman. Regularized discriminant analysis. J. of the American Statistical Association, 84(405):165–175, 1987.
http://dx.doi.org/10.2307/2289860.

[22]   K Fukunaga. Statistical Pattern Recognition. Academic Press, 2nd edition, 1990.

[23]   J Gao. Robust L1 principal component analysis and its Bayesian variational inference. Neural Computation, 20:555–572, 2008.
http://dx.doi.org/10.1162/neco.2007.11-06-397.

[24]   D Geiger, TL Liu, and MJ Donahue. Sparse representations for image decompositions. Int. J. of Computer Vision, 33:139–156, 1999.
http://dx.doi.org/10.1023/A:1008146126392.

[25]   S Girard and S Iovleff. Auto-associative models and generalized principal component analysis. J. of Multivariate Analysis, 93:21–39, 2005.
http://dx.doi.org/10.1016/j.jmva.2004.01.006.

[26]   R Gross, S Baker, I Matthews, and T Kanade. Face recognition across pose and illumination. In Stan Z. Li and Anil K. Jain, editors, Handbook of Face Recognition. Springer-Verlag, 2004.

[27]   R Gross, I Matthews, and S Baker. Appearance-based face recognition and light-fields. IEEE Trans. on Pattern Analysis and Machine Intelligence, 26:449–465, 2004.
http://dx.doi.org/10.1109/TPAMI.2004.1265861.

[28]   R Gross, I Matthews, and S Baker. Appearance-based face recognition and light fields. IEEE Trans. on Pattern Analysis and Machine Intelligence, 26:449–465, 2004.
http://dx.doi.org/10.1109/TPAMI.2004.1265861.

[29]   L Gu, SZ Li, and H-J Zhang. Learning probabilistic distribution model for multi-view face detection. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’01), volume 2, pages 116–122, 2001.
http://dx.doi.org/10.1109/CVPR.2001.990934.

[30]   PM Hall, D Marshall, and RR Martin. Incremental eigenanalysis for classification. In Proc. of the British Machine Vision Conference (BMVC’98), pages 286–295, 1998.

[31]   LK Hansen, J Larsen, FA Nielsen, SC Strother, E Rostrup, R Savoy, C Svarer, and OB Paulson. Generalizable patterns in neuroimaging: How many principal components? NeuroImage, 9:534–544, 1999.
http://dx.doi.org/10.1006/nimg.1998.0425.

[32]   DM Hawkins and GJ McLachlan. High breakdown linear discriminant analysis. J. of the American Statistical Association, 92:136–143, 1997.

[33]   Y Hel-Or and H Hel-Or. Generalized pattern matching using orbit decomposition. In Proc. of the International Conference on Image Processing (ICIP’03), volume 3, pages 69–72, 2003. Nayar work re-discovered!
http://dx.doi.org/10.1109/ICIP.2003.1247183.

[34]   Y Hel-Or and H Hel-Or. Real-time pattern matching using projection kernels. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27:1430–1445, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.184.

[35]   Y Hel-Or and H Hel-Or. Real-time pattern matching using projection kernels. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27:1430–1445, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.184.

[36]   K Honda, N Sugiura, and H Ichihashi. Robust local principal component analyzer with fuzzy clustering. In Proc. of the International Joint Conference on Neural Networks, volume 1, pages 732–737, 2003.

[37]   K Hotta. View-invariant face detection method based on local PCA cells. In Proc. of the 12th International Conference on Image Analysis and Processing, pages 57–62, 2003.
http://dx.doi.org/10.1109/ICIAP.2003.1234025.

[38]   PO Hoyer. Non-negative matrix factorization with sparseness constraints. J. of Machine Learning Research, 5:1457–1469, 2004.

[39]   K Huang, Y Ma, and R Vidal. Minimum effective dimension for mixtures of subspaces: A robust GPCA algorithm and its applications. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’04), volume 2, pages 631–638, 2004.
http://dx.doi.org/10.1109/CVPR.2004.155.

[40]   A Hyvarinen and E Oja. Independent component analysis: algorithms and applications. Neural Networks, 13:411–430, 2000.
http://dx.doi.org/10.1016/S0893-6080(00)00026-5.

[41]   M Jogan, E Zagar, and A Leonardis. Karhunen-Loeve expansion of a set of rotated templates. IEEE Trans. on Image processing, 12:817–825, 2003.
http://dx.doi.org/10.1109/TIP.2003.813141.

[42]   J Karhunen and J Joutsensalo. Learning of robust principal component subspace. In Proc. of the International Joint Conference on Neural Networks, volume 3, pages 2409–2412, 1993.
http://dx.doi.org/10.1109/IJCNN.1993.714211.

[43]   Q Ke and T Kanade. Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages 739–746, 2005.
http://dx.doi.org/10.1109/CVPR.2005.309.

[44]   D Keysers, W Macherey, H Ney, and J Dahmen. Adaptation in statistical pattern recognition using tangent vectors. IEEE Trans. on Pattern Analysis and Machine Intelligence, 26:269–274, 2004.
http://dx.doi.org/10.1109/TPAMI.2004.1262198.

[45]   J Kim, J Choi, J Yi, and M Turk. Effective representation using ICA for face recognition robust to local distortion and partial occlusion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27:1977–1981, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.242.

[46]   T-K Kim and J Kittler. Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27:318–327, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.58.

[47]   R Knothe, S Romdhani, and T Vetter. Combining PCA and LFA for surface reconstruction from a sparse set of control points. In Proc. of the 7th International Conference on Automatic Face and Gesture Recognition (FG’06), pages 637–644, 2006.
http://dx.doi.org/10.1109/FGR.2006.31.

[48]   Y Koren and L Carmel. Robust linear dimensionality reduction. IEEE Trans. on Visualization and Computer Graphics, 10:459–470, 2004.
http://dx.doi.org/10.1109/TVCG.2004.17.

[49]   N Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. J. of Machine Learning Research, 6:1783–1816, 2005.

[50]   DD Lee and HS Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788–791, 1999.
http://dx.doi.org/10.1038/44565.

[51]   K-C Lee, J Ho, M-H Yang, and D Kriegman. Video-based face recognition using probabilistic appearance manifolds. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), volume 1, pages 313–320, 2003.
http://dx.doi.org/10.1109/CVPR.2003.1211369.

[52]   H Li, J Tao, and K Zhang. Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. on Neural Networks, 17:157–165, 2006.
http://dx.doi.org/10.1109/TNN.2005.860852.

[53]   SZ Li, XW Hou, HJ Zhang, and QS Chen. Learning spatially localized, parts-based representation. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’01), volume 1, pages 207–212, 2001.
http://dx.doi.org/10.1109/CVPR.2001.990477.

[54]   Y Li. On incremental and robust subspace learning. Pattern Recognition, 37:1509–1518, 2004.
http://dx.doi.org/10.1016/j.patcog.2003.11.010.

[55]   Y Li, L-Q Xu, J Morphett, and R Jacobs. An integrated algorithm of incremental and robust PCA. In Proc. of the International Conference on Image Processing (ICIP’03), volume 1, pages 245–248, 2003.
http://dx.doi.org/10.1109/ICIP.2003.1246944.

[56]   C Liu and H Wechsler. A unified Bayesian framework for face recognition. In Proc. of the International Conference on Image Processing (ICIP’98), volume 1, pages 151–155, 1998.
http://dx.doi.org/10.1109/ICIP.1998.723447.

[57]   C Liu and H Wechsler. Comparative assessment of independent component analysis (ICA) for face recognition. In Proc. of the 2nd International Conference on Audio-and Video-Based Biometric Person Authentication, pages 211–216, 1999.

[58]   ZY Liu and L Xu. Topological local principal component analysis. Neurocomputing, 55:739–745, 2003.
http://dx.doi.org/10.1016/S0925-2312(03)00414-4.

[59]   M Loog, RPW Duin, and R Haeb-Umbach. Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Trans. on Pattern Analysis and Machine Intelligence, 23:762–766, 2001.
http://dx.doi.org/10.1109/34.935849.

[60]   J Lu, KN Plataniotis, and AN Venetsanopoulos. Face recognition using LDA-based algorithms. IEEE Trans. on Neural Networks, 14:195–200, 2003.
http://dx.doi.org/10.1109/TNN.2002.806647.

[61]   AM Martinez. Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24:748–763, 2002.
http://dx.doi.org/10.1109/TPAMI.2002.1008382.

[62]   AM Martinez and AC Kak. PCA versus LDA. IEEE Trans. on Pattern Analysis and Machine Intelligence, 23:228–233, 2001.
http://dx.doi.org/10.1109/34.908974.

[63]   M Meytlis and L Sirovich. On the dimensionality of face space. IEEE Trans. on Pattern Analysis and Machine Intelligence, 29:1262–1267, 2007.
http://dx.doi.org/10.1109/TPAMI.2007.1033.

[64]   TP Minka. Automatic choice of dimensionality for PCA. In Proc. of Advances in Neural Information Processing Systems, volume 13, pages 598–604, 2001.

[65]   B Moghaddam, T Jebara, and A Pentland. Bayesian face recognition. Pattern Recognition, 33:1771–1782, 2000.

[66]   B Moghaddam and A Pentland. Probabilistic visual learning for object recognition. In Proc. of the 5th International Conference on Computer Vision and Pattern Recognition (ICCV’95), pages 786–793, 1995.

[67]   B Moghaddam, W Wahid, and A Pentland. Beyond eigenfaces: probabilistic matching for face recognition. In Proc. of the 3rd International Conference on Automatic Face and Gesture Recognition (FG’98), pages 30–35, 1998.
http://dx.doi.org/10.1109/AFGR.1998.670921.

[68]   H Murase and SK Nayar. Illumination planning for object recognition using parametric eigenspaces. IEEE Trans. on Pattern Analysis and Machine Intelligence, 16:1219–1227, 1994.
http://dx.doi.org/10.1109/34.387485.

[69]   J Ng and H Cheung. Biometric Authentication, volume 3072 of Lecture Notes in Computer Science, chapter Dynamic Local Feature Analysis for Face Recognition. Springer, 2004.

[70]   DCL Ngo, ABJ Teoh, and A Goh. Biometric hash: high-confidence face recognition. IEEE Trans. on Circuits and Systems for Video Technology, 16:771–775, 2006.
http://dx.doi.org/10.1109/TCSVT.2006.873780.

[71]   K Nishino, SK Nayar, and T Jebara. Clustered blockwise PCA for representing visual data. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27:1675–1679, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.193.

[72]   S Ouyang, Z Bao, and G-S Liao. Robust recursive least squares learning algorithm for principal component analysis. IEEE Trans. on Neural Networks, 11:215–221, 2000.
http://dx.doi.org/10.1109/72.822524.

[73]   CH Park and H Park. A comparison of generalized linear discriminant analysis algorithms. Pattern Recognition, 41:1083–1097, 2008.
http://dx.doi.org/10.1016/j.patcog.2007.07.022.

[74]   JH Park, Z Zhang, H Zha, and R Kasturi. Local smoothing for manifold learning. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’04), volume 2, pages 452–459, 2004.
http://dx.doi.org/10.1109/CVPR.2004.1315199.

[75]   PS Penev. Redundancy and dimensionality reduction in sparse-distributed representations of natural objects in terms of their local features. In Proc. of Advances in Neural Information Processing Systems, volume 13, pages 901–907, 2001.

[76]   PS Penev and L Sirovich. The global dimensionality of face space. In Proc. of the 4th International Conference on Automatic Face and Gesture Recognition (FG’00), pages 264–273, 2000.
http://dx.doi.org/10.1109/AFGR.2000.840645.

[77]   T Poggio and F Girosi. Notes on PCA, regularization, sparsity and support vector machines. Technical Report A.I.Memo-1632, MIT Artificial Intelligence Laboratory, 1998.

[78]   A Pujol, J Vitria, F Lumbreras, and JJ Villanueva. Topological principal component analysis for face encoding and recognition. Pattern Recognition Letters, 22:769–776, 2001.
http://dx.doi.org/10.1016/S0167-8655(01)00027-7.

[79]   AN Rajagopalan, R Chellappa, and NT Koterba. Background learning for robust face recognition with PCA in the presence of clutter. IEEE Trans. on Image processing, 14:832–843, 2005.
http://dx.doi.org/10.1109/TIP.2005.847288.

[80]   YN Rao and JC Principe. Robust on-line principal component analysis based on a fixed-point approach. In Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’02), volume 1, pages 981–984, 2002.
http://dx.doi.org/10.1109/ICASSP.2002.1005906.

[81]   J Robinson. Covariance matrix estimation for appearance-based face image processing. In Proc. of the British Machine Vision Conference (BMVC’05), volume 1, pages 389–398, 2005.

[82]   K Saitwal, AA Maciejewski, RG Roberts, and BA Draper. Using the low-resolution properties of correlated images to improve the computational efficiency of eigenspace decomposition. IEEE Trans. on Image processing, 15:2376–2387, 2006.
http://dx.doi.org/10.1109/TIP.2006.875231.

[83]   M Savvides, BVKV Kumar, and PK Khosla. Eigenphases vs eigenfaces. In Proc. of the 17th IAPR International Conference on Pattern Recognition (ICPR’04), volume 3, pages 810–813, 2004.
http://dx.doi.org/10.1109/ICPR.2004.1334652.

[84]   B Scholkopf, A Smola, and KR Muller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.
http://dx.doi.org/10.1162/089976698300017467.

[85]   AK Seghouane and A Cichocki. Bayesian estimation of the number of principal components. Signal Processing, 87:562–568, 2006.
http://dx.doi.org/10.1016/j.sigpro.2006.09.001.

[86]   S Serneels and T Verdonck. Principal component analysis for data containing outliers and missing elements. Computational Statistics and Data Analysis, 52:1712–1727, 2008.
http://dx.doi.org/10.1016/j.csda.2007.05.024.

[87]   OG Sezer, Y Altunbasak, and A Ercil. Face recognition with independent component-based super-resolution. In Visual Communications and Image Processing, volume 6077 of Proc. of SPIE, 2006.
http://dx.doi.org/10.1117/12.645868.

[88]   G Shakhnarovich and B Moghaddam. Handbook of Face Recognition, chapter Face Recognition in Subspaces. Springer-Verlag, 2004.

[89]   T Shan, BC Lovell, and S Chen. Face recognition robust to head pose from one sample image. In Proc. of the 18th IAPR International Conference on Pattern Recognition (ICPR’06), volume 1, pages 515–518, 2006.
http://dx.doi.org/10.1109/ICPR.2006.527.

[90]   A Shashua, A Levin, and S Avidan. Manifold pursuit: a new approach to appearance based recognition. In Proc. of the 16th IAPR International Conference on Pattern Recognition (ICPR’02), volume 3, pages 590–594, 2002.
http://dx.doi.org/10.1109/10.1109/ICPR.2002.1048008.

[91]   HY Shum, K Ikeuchi, and R Reddy. Principal component analysis with missing data and its application to polyhedral object modeling. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17:854–867, 1995.
http://dx.doi.org/10.1109/34.406651.

[92]   L Sirovich and M Kirby. Low-dimensional procedure for the characterization of human faces. J. of the Optical Society of America A, 4:519–524, 1987.
http://dx.doi.org/10.1364/JOSAA.4.000519.

[93]   D Skočaj and A Leonardis. Incremental and robust learning of subspace representations. Image and Vision Computing, 26:27–38, 2008.
http://dx.doi.org/10.1016/j.imavis.2005.07.028.

[94]   T Su and JG Dy. Automated hierarchical mixtures of probabilistic principal component analyzers. In Proc. of the International Conference on Machine Learning (ICML’04), pages 98–105, 2004.
http://dx.doi.org/10.1145/1015330.1015393.

[95]   RW Swiniarski, HK Lim, JH Shin, and A Skowron. Independent component analysis, principal component analysis and rough sets in hybrid mammogram classification. In Proc. of the International Conference on Image Processing, Computer Vision, & Pattern Recognition, pages 640–645, 2006. There is also a ’Independent Component Analysis, Principal Component Analysis and Rough Sets in Face Recognition’.

[96]   JD Tebbens and P Schlesinger. Improving implementation of linear discriminant analysis for the high dimension/small sample size problem. Computational Statistics and Data Analysis, 52:423–437, 2007.
http://dx.doi.org/10.1016/j.csda.2007.02.001.

[97]   ME Tipping and CM Bishop. Probabilistic principal component analysis. J. of the Royal Statistical Society: Series B (Statistical Methodology), 61:611–622, 1999.
http://dx.doi.org/10.1111/1467-9868.00196.

[98]   M Turk and A Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3:71–86, 1991.
http://dx.doi.org/10.1162/jocn.1991.3.1.71.

[99]   M Vatsa, R Singh, and P Gupta. Face recognition using multiple recognizers. In Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, volume 3, pages 2186–2190, 2004.
http://dx.doi.org/10.1109/ICSMC.2004.1400652.

[100]   J Vermaak and P Perez. Constrained subspace modeling. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), volume 2, pages 106–113, 2003.
http://dx.doi.org/10.1109/CVPR.2003.1211459.

[101]   MA Vicente, PO Hoyer, and A Hyvärinen. Equivalence of some common linear feature extraction techniques for appearance-based object recognition tasks. IEEE Trans. on Pattern Analysis and Machine Intelligence, 29:896–900, 2007.
http://dx.doi.org/10.1109/TPAMI.2007.1074.

[102]   R Vidal, Y Ma, and S Sastry. Generalized principal components analysis (GPCA). IEEE Trans. on Pattern Analysis and Machine Intelligence, 27:1945–1959, 2005.
http://dx.doi.org/10.1109/TPAMI.2005.244.

[103]   C Wang and W Wang. Links between ppca and subspace methods for complete gaussian density estimation. IEEE Trans. on Neural Networks, 17:789–792, 2006.
http://dx.doi.org/10.1109/TNN.2006.871718.

[104]   X Wang and X Tang. Random sampling LDA for face recognition. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’04), volume 2, pages 259–265, 2004.
http://dx.doi.org/10.1109/CVPR.2004.1315172.

[105]   M Wasim and RG Brereton. Determination of the number of significant components in liquid chromatography nuclear magnetic resonance spectroscopy. Chemometrics and intelligent laboratory systems, 72:133–151, 2004.
http://dx.doi.org/10.1016/j.chemolab.2004.01.008.

[106]   H Wildenauer, T Melzer, and H Bischof. A gradient-based eigenspace approach to dealing with occlusions and non-gaussian noise. In Proc. of the 16th IAPR International Conference on Pattern Recognition (ICPR’02), volume 2, pages 977–980, 2002.
http://dx.doi.org/10.1109/ICPR.2002.1048469.

[107]   L Xu and AL Yuille. Robust principal component analysis by self-organizing rules based on statistical physics approach. IEEE Trans. on Neural Networks, 6:131–143, 1995.
http://dx.doi.org/10.1109/72.363442.

[108]   AY Yang, SR Rao, and Y Ma. Robust statistical estimation and segmentation of multiple subspaces. In Proc. of the Conference on Computer Vision and Pattern Recognition Workshop, page 99, 2006.
http://dx.doi.org/10.1109/CVPRW.2006.178.

[109]   J Yang and Jy Yang. Why can LDA be performed in PCA tranformed space? Pattern Recognition, 36:563–566, 2003.
http://dx.doi.org/10.1016/S0031-3203(02)00048-1.

[110]   J Yang, D Zhang, AF Frangi, and J Yang. Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 26:131–137, 2004.
http://dx.doi.org/10.1109/TPAMI.2004.10004.

[111]   J Yang, D Zhang, and JY Yang. Constructing PCA baseline algorithms to reevaluate ICA-based face-recognition performances. IEEE Trans. on Systems, Man and Cybernetics, Part B, 37:1015–1021, 2007.
http://dx.doi.org/10.1109/TSMCB.2007.891541.

[112]   Q Yang, X Ding, and Z Chen. Discriminant local feature analysis of facial images. In Proc. of the International Conference on Image Processing (ICIP’03), volume 2, pages 863–866, 2003.
http://dx.doi.org/10.1109/ICIP.2003.1246817.

[113]   J Yu, Q Tian, T Rui, and TS Huang. Integrating discriminant and descriptive information for dimension reduction and classification. IEEE Trans. on Circuits and Systems for Video Technology, 17:372–377, 2007.
http://dx.doi.org/10.1109/TCSVT.2007.890861.

[114]   S Yu, K Yu, V Tresp, H-P Kriegel, and M Wu. Supervised probabilistic principal component analysis. In Proc. of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’06), pages 464–473, 2006.
http://dx.doi.org/10.1145/1150402.1150454.

[115]   Q Zhang and Y-W Leung. A class of learning algorithms for principal component analysis and minor component analysis. IEEE Trans. on Neural Networks, 11:529–533, 2000.
http://dx.doi.org/10.1109/72.839022.

[116]   Z Zhang and W Wriggers. Local feature analysis: a statistical theory for reproducible essential dynamics of large macromolecules. Proteins, 64:391–403, 2006.
http://dx.doi.org/10.1002/prot.20983.